List of Studies ( Metabolite:Cer 18:1;O2/16:1)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004333 | AN007236 | Oxidative pentose phosphate pathway is required for T cell activation and anti-tumor immunity - G6PD-knockout | T-cells | Mouse | Cancer | Princeton University | LC-MS |
| ST004238 | AN007055 | Lipidomic Characterization of Wild-Type vs ATGL/HSL Double Knockout Adipocytes in Basal and Stimulated Lipolysis | Adipocytes | Mouse | University of Szeged | LC-MS | |
| ST004229 | AN007039 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004093 | AN006783 | Autoimmune Disease Risk Gene ANKRD55 Promotes T Cell Proliferation and Th17 2 Effector Function Through Metabolic Modulation | T-cells | Mouse | Autoimmune disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003805 | AN006254 | Epigenetic changes, neuronal dysregulation and behavioral abnormalities in Zmym2+/- mutant mice, a genetic animal model of schizophrenia and neurodevelopmental disorders | Brain | Mouse | Neurodevelopment Disorder | Broad Institute of MIT and Harvard | LC-MS |
| ST003805 | AN006254 | Epigenetic changes, neuronal dysregulation and behavioral abnormalities in Zmym2+/- mutant mice, a genetic animal model of schizophrenia and neurodevelopmental disorders | Brain | Mouse | Schizophrenia | Broad Institute of MIT and Harvard | LC-MS |
| ST003776 | AN006202 | Investigation of Hepatic Lipid Alterations Following Micro- and Nanoplastic-Ingestion | Liver | Mouse | Environmental exposure | University of Bonn | LC-MS |
| ST003751 | AN006159 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Blood | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003751 | AN006159 | Comprehensive Lipidomic Analysis Identifies Critical Lipid and Metabolic Pathway Shifts in Alport Syndrome | Urine | Human | Kidney disease | Universidad CEU San Pablo | LC-MS |
| ST003702 | AN006074 | Kupffer cells control neonatal hepatic glucose metabolism via Igf1 signaling - lipidomics analysis of postnatal day 0 murine livers after macropahges depletion using Csf1r conditional KO | Liver | Mouse | University of Bonn | LC-MS | |
| ST003694 | AN006061 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003661 | AN006017 | Lipidomics facilitates the discovery of diagnostic biomarkers in patients with chronic total occlusion during the perioperative period | Blood | Human | Cardiovascular disease | Zhongshan Hospital Fudan University | LC-MS |
| ST003645 | AN005984 | Targeting the c-MYC/ELOVL6 Pathway Alters Cell Membrane Mechanics and Enhances Chemotherapeutic Efficacy in Pancreatic Cancer | Cultured cells | Human | Cancer | Universidad Francisco de Vitoria - Hospital 12 de Octubre | LC-MS |
| ST003637 | AN005973 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005962 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003614 | AN005939 | Kupffer cells control neonatal hepatic glucose metabolism via Igf1 signaling - lipidomics analysis of postnatal day 0 murine livers after macropahges depletion | Liver | Mouse | University of Bonn | LC-MS | |
| ST003514 | AN005770 | Highly reliable LC-MS lipidomics database for efficient human plasma profiling based on NIST SRM 1950 | Blood | Human | Universidad CEU San Pablo | LC-MS | |
| ST003438 | AN005649 | Unbiased genetic screening and metabolomics identifies glial adenosine metabolism as a therapeutic target in Parkinson’s disease | Fly Head | Fruit fly | Parkinsons disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003398 | AN005578 | Specific activation of the integrated stress response (ISR) uncovers regulation of lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | LC-MS |
| ST003391 | AN005565 | Impact of high-fat diet enriched in cis or trans fatty acids and myriocin on plasma sphingolipids in Ldlr-/- mice | Blood | Mouse | Atherosclerosis | Salk Institute for Biological Studies | LC-MS |
| ST003357 | AN005499 | Incorporation of oleate-d9 and elaidate-d17 in sphingolipids in Huh7 cells. | Cultured cells | Human | Atherosclerosis | Salk Institute for Biological Studies | LC-MS |
| ST003273 | AN005359 | Impact of serine supplementation following treatment with serine/glycine-depleted diet: Plasma | Blood | Mouse | Salk Institute for Biological Studies | LC-MS | |
| ST003272 | AN005358 | Impact of serine supplementation following treatment with serine/glycine-depleted diet: Retina and back of eye samples | Back of Eye | Mouse | Salk Institute for Biological Studies | LC-MS | |
| ST003271 | AN005357 | Impact of serine supplementation following treatment with serine/glycine-depleted diet: Paw skin | Skin | Mouse | Salk Institute for Biological Studies | LC-MS | |
| ST003222 | AN005283 | A small molecule macrophage migration inhibitory factor agonist ameliorates age-related myocardial intolerance to ischemia-reperfusion insults via metabolic regulation - Part 1 | Heart | Mouse | Ischemia | University of Mississippi Medical Center | LC-MS |
| ST003114 | AN005103 | Lipidomics analyses in model membranes, isolated mitochondria and cellular systems to study how the local lipid environment affects BAX and BAK function during apoptosis. | Mitochondria | Human | Cancer | University of Cologne | LC-MS |
| ST003103 | AN005077 | Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients using a Multiplatform Mass Spectrometry-based Metabolomics Approach | Blood | Human | COVID-19 | Universidad CEU San Pablo | GC-MS/LC-MS |
| ST003103 | AN005078 | Reinforcing the Evidence of Mitochondrial Dysfunction in Long COVID Patients using a Multiplatform Mass Spectrometry-based Metabolomics Approach | Blood | Human | COVID-19 | Universidad CEU San Pablo | GC-MS/LC-MS |
| ST003090 | AN005054 | Analysis of lipid profiles of N2A-Pz1-KO cells expressing tdTOMATO-vector (mock), TMEM120A, or TMEM120B | Cultured cells | Mouse | Rutgers University | LC-MS | |
| ST002880 | AN004719 | Hypoxia-driven dynamics of tomato root lipidome | Roots | Tomato | Leibniz Institute for Plasma Science and Technology | LC-MS | |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002782 | AN004529 | Lipidomics analysis of maternal obesity model - knock out | Liver | Mouse | Fatty liver disease | University of Bonn | MS(Dir. Inf.) |
| ST002782 | AN004529 | Lipidomics analysis of maternal obesity model - knock out | Liver | Mouse | Obesity | University of Bonn | MS(Dir. Inf.) |
| ST002522 | AN004155 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002471 | AN004033 | Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling | Feces | Human | Ulcerative colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST002470 | AN004029 | Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human plasma profiling | Blood | Human | Ulcerative colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST002334 | AN003810 | Phospholipase D3 impact on the endolysosomal lipidome | Cultured cells | Human | Alzheimers disease | VIB-KU Leuven | LC-MS |
| ST002283 | AN003730 | The “ForensOMICS” approach to forensic post-mortem interval estimation: combining metabolomics, lipidomics and proteomics for the analysis human skeletal remains | Bone | Human | University of Central Lancashire | LC-MS | |
| ST002047 | AN003334 | Lyso-lipid induced oligodendrocytes maturation underlie restoration of optic nerve function | Cultured cells | Rat | Eye disease | University of Miami | LC-MS |
| ST001942 | AN003184 | Lipidomics of esophageal adenocarcinoma | Esophagus | Human | Cancer | QIMR Berghofer Medical Research Institute | LC-MS |
| ST001936 | AN004932 | Pseudoexfoliation aqueous humor lipidome suggests enrichment of specific pathways | Eye tissue | Human | Pseudoexfoliation syndrome | University of Miami | LC-MS |
| ST001935 | AN003147 | Metabolomic profiling of spontaneous macaque model for diabetes mellitus | Blood | Macaque monkey | Diabetes | Xiamen University | GC-MS |
| ST001935 | AN003147 | Metabolomic profiling of spontaneous macaque model for diabetes mellitus | Liver | Macaque monkey | Diabetes | Xiamen University | GC-MS |
| ST001820 | AN002955 | WT neurons treated with APOE3/3 and APOE4/4 ACM | Neurons | Mouse | Alzheimers disease | Columbia University | LC-MS |
| ST001819 | AN002952 | EC and PVC from 14-15 month-old APOE3/3, APOE3/4 and APOE4/4 mice | Brain | Mouse | Alzheimers disease | Columbia University | LC-MS |
| ST001789 | AN002901 | Acute metabolomic changes of plasma in response to endurance exercise | Blood | Human | University of California, San Diego | LC-MS | |
| ST001780 | AN002890 | Comparative analysis of metabolomic profiles in cerebrospinal fluid before and after endurance exercise | Cerebrospinal fluid | Human | University of California, San Diego School of Medicine | LC-MS | |
| ST001687 | AN002754 | Non-transformed cells respond to fat by inducing glucose metabolism | Liver | Mouse | VIB-KU Leuven Center for Cancer Biology | LC-MS | |
| ST001420 | AN002375 | Metabolomic analysis of patients with recurrent angina | Blood | Human | Angina | University of California, San Diego | |
| ST001381 | AN002301 | Lipid profile Dataset of optogenetics induced optic nerve regeneration | Optic nerve | Mouse | Eye disease | University of Miami | LC-MS |
| ST001381 | AN002302 | Lipid profile Dataset of optogenetics induced optic nerve regeneration | Optic nerve | Mouse | Eye disease | University of Miami | LC-MS |
| ST001336 | AN002226 | Effect of high-fat diet and bile acid treatment on serum and tissue lipidomes in mice | Blood | Mouse | QIMR Berghofer Medical Research Institute | LC-MS | |
| ST001336 | AN002230 | Effect of high-fat diet and bile acid treatment on serum and tissue lipidomes in mice | Blood | Mouse | QIMR Berghofer Medical Research Institute | LC-MS | |
| ST001323 | AN002199 | Effect of high-fat diet on serum lipidome in mice | Blood | Mouse | QIMR Berghofer Medical Research Institute | LC-MS | |
| ST001127 | AN001852 | Lipid profiling of caecal samples from GF mice colonized with B. thetaiotaomicron WT or the ΔSPT mutants (part III) | Cecum | Mouse | Irritable bowel syndrome | Broad Institute of MIT and Harvard | LC-MS |
| ST001126 | AN001851 | WT and ΔSPT cultures of B. thetaiotaomicron grown in Minimal Media (part II) | Bacterial cells | Bacteroides thetaiotaomicron | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST001125 | AN001850 | WT and ΔSPT cultures of B. thetaiotaomicron and B. ovatus grown BHI liquid media (part I) | Bacterial cells | Bacteroides ovatus | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST001125 | AN001850 | WT and ΔSPT cultures of B. thetaiotaomicron and B. ovatus grown BHI liquid media (part I) | Bacterial cells | Bacteroides thetaiotaomicron | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST001067 | AN001747 | Lipidomics analysis for aged mice femoral muscle (part - IV) | Adipose tissue | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001067 | AN001747 | Lipidomics analysis for aged mice femoral muscle (part - IV) | Brain | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001067 | AN001747 | Lipidomics analysis for aged mice femoral muscle (part - IV) | Liver | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001067 | AN001747 | Lipidomics analysis for aged mice femoral muscle (part - IV) | Muscle | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001066 | AN001745 | Lipidomics analysis for aged mice liver (part-III) | Adipose tissue | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001066 | AN001745 | Lipidomics analysis for aged mice liver (part-III) | Brain | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001066 | AN001745 | Lipidomics analysis for aged mice liver (part-III) | Liver | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001066 | AN001745 | Lipidomics analysis for aged mice liver (part-III) | Muscle | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001065 | AN001743 | Lipidomics analysis for aged mice brain cortex (part-II) | Adipose tissue | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001065 | AN001743 | Lipidomics analysis for aged mice brain cortex (part-II) | Brain | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001065 | AN001743 | Lipidomics analysis for aged mice brain cortex (part-II) | Liver | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001065 | AN001743 | Lipidomics analysis for aged mice brain cortex (part-II) | Muscle | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001063 | AN001740 | Lipidomics analysis for aged mice organs | Adipose tissue | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001063 | AN001740 | Lipidomics analysis for aged mice organs | Brain | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001063 | AN001740 | Lipidomics analysis for aged mice organs | Liver | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST001063 | AN001740 | Lipidomics analysis for aged mice organs | Muscle | Mouse | Takeda Pharmaceutical Company Limited | LC-MS | |
| ST000617 | AN000947 | Validation of the application of targeted metabolomic appraoch in the diagnosis of CFS | Blood | Human | Myalgic encephalomyelitis/chronic fatigue syndrome | University of California, San Diego | LC-MS |
| ST000465 | AN000727 | Uniquely Tumor-Selective Englerin A Profoundly Alters Lipid Metabolism in Renal Cell Carcinoma inducing ER-Stress and an Acute Inflammatory Response | Kidney | Human | Cancer | University of California, San Diego | LC-MS |
| ST000450 | AN000705 | Metabolic features of chronic fatigue syndrome | Blood | Human | Myalgic encephalomyelitis/chronic fatigue syndrome | University of California, San Diego | LC-MS |