Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Cyclopamine)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002758 AN004477 Metabolic responses of normal rat kidneys to a high salt intake (Plasma) Blood Rat Medical College of Wisconsin Area
ST002759 AN004479 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002759 AN004481 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002760 AN004485 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST001796 AN002917 Changes in mesenteric lymph lipid profile of mice upon high-fat diet with and without Celecoxib Mesenteric lymph Mus musculus Diabetes Monash Institute of Pharmaceutical Sciences height
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences mV*min
ST003053 AN005007 Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics Bacterial cells Staphylococcus aureus Bacterial infection Monash University peak height
ST000403 AN000642 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST000539 AN000818 Metabolomics-based elucidation of active metabolic pathways in erythrocytes and HSC-derived reticulocytes (part II) Cells Human Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST003179 AN005222 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST000549 AN000837 Investigating large scale metabolomics in mice serum lacking insulin receptors and IGF-1 receptors Blood Mouse Diabetes Mayo Clinic Peak intensity
  logo