Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Ile-Asn)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST004389 AN007334 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Feces Pig Environmental stress North Carolina State University LC-MS
ST004389 AN007334 Longitudinal Multi-omics Profiling Reveals Different Adaptation to Heat Stress in Genomically Divergent Lactating Sows Milk Pig Environmental stress North Carolina State University LC-MS
ST004301 AN007163 Metabolomic profiling of three native North American ash trees (Fraxinus spp.) and their relationship to the Emerald ash borer (Agrilus planipennis) infestation Plant tissues Green ash, Black ash, White ash Parasitic infestation Cornell University LC-MS
ST004290 AN007133 Metabolomics characterisation of Plasmodium falciparum response to plasmepsin V peptidomimetic inhibitors - 5 hour treatment Blood Plasmodium falciparum Malaria Monash University LC-MS
ST004153 AN006894 Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model Feces Rat Shanghai Jiao Tong University LC-MS
ST003911 AN006421 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 Bacterial cells Eggerthella lenta Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003911 AN006421 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 Bacterial cells Fusobacterium nucleatum Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Bifidobacteria Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Clostridium Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Escherichia coli Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003910 AN006418 Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. Bacterial cells Streptococcus Inflammatory bowel disease Broad Institute of MIT and Harvard LC-MS
ST003565 AN005857 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003144 AN005160 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University LC-MS
ST003053 AN005006 Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics Bacterial cells Staphylococcus aureus Bacterial infection Monash University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002792 AN004543 Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002759 AN004482 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney Rat Medical College of Wisconsin LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China LC-MS
ST002471 AN004033 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling Feces Human Ulcerative colitis Broad Institute of MIT and Harvard LC-MS
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human University of California, Davis LC-MS
ST002405 AN003919 Stool global metabolite levels in peanut allergy (Part 2) Feces Human Peanut allergy Icahn School of Medicine at Mount Sinai LC-MS
ST002309 AN003771 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002108 AN003448 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002108 AN003449 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002107 AN003446 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002106 AN003445 Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) Blood Plasmodium falciparum Malaria Monash University LC-MS
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001788 AN002899 β-Adrenergic regulation of metabolism in macrophages (part-IV) Macrophages Human Monash University LC-MS
ST001788 AN002900 β-Adrenergic regulation of metabolism in macrophages (part-IV) Macrophages Human Monash University LC-MS
ST001548 AN002578 β-Adrenergic regulation of metabolism in macrophages (part-II) Macrophages Human Monash University LC-MS
ST001547 AN002576 β-Adrenergic regulation of metabolism in macrophages Macrophages Human Monash University LC-MS
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Hepatopancreas Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences LC-MS
ST001315 AN002189 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University LC-MS
ST000867 AN001396 Metabolic Profiling of Date Palm Fruits (part II) Date palm fruit Date palm Weill Cornell Medicine, Qatar GC-MS/LC-MS
ST000508 AN000778 Metabolic Profiling of Date Palm Fruits Plant Date palm Weill Cornell Medicine, Qatar GC-MS/LC-MS
  logo