List of Studies ( Metabolite:Ile-Thr)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST002405 | AN003919 | Stool global metabolite levels in peanut allergy (Part 2) | Feces | Human | Peanut allergy | Icahn School of Medicine at Mount Sinai | Absolute Intensity |
ST002471 | AN004033 | Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling | Feces | Human | Ulcerative colitis | Broad Institute of MIT and Harvard | Abundance |
ST002247 | AN003670 | Microbiota and Health Study (Dhaka, Bangladesh) | Feces | Human | Broad Institute of MIT and Harvard | Abundances | |
ST000508 | AN000778 | Metabolic Profiling of Date Palm Fruits | Plant | Date palm | Weill Cornell Medicine in Qatar | Counts per second | |
ST000867 | AN001396 | Metabolic Profiling of Date Palm Fruits (part II) | Date palm fruit | Date palm | Weill Cornell Medicine in Qatar | Counts per second | |
ST001324 | AN002202 | Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress | Pacific Abalone | Institute of Oceanology, Chinese Academy of Sciences | mV*min | ||
ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | Peak area |
ST002977 | AN004887 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002977 | AN004888 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002977 | AN004889 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | Peak area | |
ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | Peak Area |
ST003053 | AN005006 | Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics | Bacterial cells | Staphylococcus aureus | Bacterial infection | Monash University | peak height |
ST003144 | AN005159 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003521 | AN005782 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | peak height |
ST000546 | AN000833 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST001276 | AN002117 | Development and Characterisation of a Novel Class of Aroyl Guanidine Containing Anti-Trypanosomal Compounds | Cultured cells | Trypanosoma brucei | Sleeping sickness | Monash University | Peak height |
ST003179 | AN005221 | Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Peak height |
ST001547 | AN002576 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | Peak intensity | |
ST001548 | AN002579 | β-Adrenergic regulation of metabolism in macrophages (part-II) | Macrophages | Human | Monash University | Peak intensity | |
ST002106 | AN003445 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002107 | AN003447 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002108 | AN003448 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002309 | AN003772 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST000974 | AN001595 | GC6-74 matabolomic of TB (Part 1: Plasma) | Blood | Human | Tuberculosis | Max Planck Institute for Infection Biology | scaled units |
ST000975 | AN001596 | GC6-74 metabolomics of TB vs healthy (Part 2: Serum) | Blood | Human | Tuberculosis | Max Planck Institute for Infection Biology | scaled units |
ST001304 | AN002172 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii | Fibroblast cells | Toxoplasma gondii | Parasitic infection | Monash University | Signal Intensity |
ST001315 | AN002190 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |
ST001955 | AN003180 | Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content | Leaves | Maize | Heilongjiang Bayi Agricultural University | µg/100ml | |
ST001955 | AN003181 | Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content | Leaves | Maize | Heilongjiang Bayi Agricultural University | µg/100ml |