Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Leu-Glu)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003348 AN005484 An integrated LC-MS analysis of the biometric characteristics of different time cohorts of race walkers - untargeted Blood Human First Affiliated Hospital of Dalian Medical University LC-MS
ST003333 AN005461 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Environmental exposure Defence Institute of Physiology and Allied Sciences LC-MS
ST003333 AN005461 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Hypoxia Defence Institute of Physiology and Allied Sciences LC-MS
ST003066 AN005022 Heritability of RBC metabolites: baseline correlation of metabolites and markers of RBC health and stability Erythrocytes Human University of Iowa Other
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004889 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004890 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002787 AN004534 Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome Feces Human Cancer Wuhan University of Science and Technology LC-MS
ST002512 AN004136 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China LC-MS
ST001955 AN003180 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaf Maize Heilongjiang Bayi Agricultural University APCI-MS
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaf Maize Heilongjiang Bayi Agricultural University APCI-MS
ST001794 AN002911 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001783 AN002894 Performance of Three Differential Metabolites at Different TSS within 20 days Blood Mouse Hebei medical university LC-MS
ST001782 AN002893 Examining the Identified Differential Metabolites in Other Antipsychotics with a High Fatality Frequency (part IV) Blood Mouse Hebei medical university LC-MS
ST001781 AN002892 Identifying Candidate Differential Metabolites in lethal chlorpromazine poisoning Relative to non-drug related deaths (part III) Blood Mouse Hebei medical university LC-MS
ST001746 AN002842 Examining the Identified Differential Metabolites in Other Antipsychotics with a High Fatality Frequency Blood Mouse Hebei medical university LC-MS
ST001739 AN002832 Differential Metabolites and Disturbed Metabolic Pathways Associated with chlorpromazine Poisoning Blood Mouse Hebei medical university LC-MS
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Hepatopancreas Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences LC-MS
ST000975 AN001596 GC6-74 metabolomics of TB vs healthy (Part 2: Serum) Blood Human Tuberculosis Max Planck Institute for Infection Biology LC-MS
ST000867 AN001396 Metabolic Profiling of Date Palm Fruits (part II) Date palm fruit Date palm Weill Cornell Medicine, Qatar GC-MS/LC-MS
ST000508 AN000778 Metabolic Profiling of Date Palm Fruits Plant Date palm Weill Cornell Medicine, Qatar GC-MS/LC-MS
  logo