Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Leu-Gly-Pro)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002759 AN004479 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST002306 AN003768 Metabolomics profiling of full extracts of bacterial culture supernatants. Bacterial cells Bacillus megaterium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut peak area
ST002306 AN003768 Metabolomics profiling of full extracts of bacterial culture supernatants. Bacterial cells Enterococcus faecium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut peak area
ST002307 AN003769 Metabolomics profiling of the secondary fractions 4 of bacterial culture supernatants. Bacterial cells Bacillus megaterium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut peak area
ST002307 AN003769 Metabolomics profiling of the secondary fractions 4 of bacterial culture supernatants. Bacterial cells Enterococcus faecium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut peak area
ST003024 AN004958 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 Bacterial cells Bacteria Monash Institute of Pharmaceutical Sciences peak height
ST003036 AN004977 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences peak height
ST003053 AN005006 Providing insight into the mechanism of action of Cationic Lipidated Oligomers (CLOs) using metabolomics Bacterial cells Staphylococcus aureus Bacterial infection Monash University peak height
ST003521 AN005782 Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii Bacterial cells Acinetobacter baumannii Bacterial infection Monash University peak height
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST001304 AN002172 Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii Fibroblast cells Toxoplasma gondii Parasitic infection Monash University Signal Intensity
  logo