List of Studies ( Metabolite:N-Acetyl-D-mannosaminolactone)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST001788 | AN002900 | β-Adrenergic regulation of metabolism in macrophages (part-IV) | Macrophages | Human | Monash University | Intensity | |
ST002010 | AN003276 | Chemoresistant Ovarian Cancer Global Metabolomics | Cultured cells | Human | Cancer | The University of South Australia | Intensity |
ST001658 | AN002708 | Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites | Yeast cells | Yeast | Cancer | Johns Hopkins University | Peak area |
ST002066 | AN003366 | Glutaminase inhibition impairs CD8 T cell activation in STK11/Lkb1 deficient lung cancer | Lung | Mouse | Cancer | The Walter and Eliza Hall Institute of Medical Research | peak height |
ST002104 | AN003440 | Chemoresistant Cancer Cell Lines are Characterized by Migratory, Amino Acid Metabolism, Protein Catabolism and IFN1 Signalling Perturbations | Cultured cells | Human | Cancer | Future Industries Institute | peak height |
ST002412 | AN003931 | Metabolic effects of the protein kinase R | Macrophages | Mouse | Hudson | peak height | |
ST000546 | AN000833 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST001547 | AN002577 | β-Adrenergic regulation of metabolism in macrophages | Macrophages | Human | Monash University | Peak intensity | |
ST001548 | AN002579 | β-Adrenergic regulation of metabolism in macrophages (part-II) | Macrophages | Human | Monash University | Peak intensity | |
ST001549 | AN002581 | β-Adrenergic regulation of metabolism in macrophages (part-III) | Macrophages | Human | Monash University | Peak intensity | |
ST002309 | AN003772 | Targeting malaria parasites with novel derivatives of azithromycin | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST001175 | AN001951 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium cells | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |
ST001315 | AN002190 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Blood | Plasmodium falciparum | Malaria | Monash University | Signal Intensity |