List of Studies ( Metabolite:PC 14:0/14:0)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004350 | AN007261 | The metabolic effects of succinylation and desuccinylation of HADHB at lysine 292 | Cultured cells | Rat | Nanchang University Second Affiliated Hospital | LC-MS | |
| ST004333 | AN007236 | Oxidative pentose phosphate pathway is required for T cell activation and anti-tumor immunity - G6PD-knockout | T-cells | Mouse | Cancer | Princeton University | LC-MS |
| ST004229 | AN007039 | Aromatic Microbial Metabolite Hippuric Acid Potentiates Pro-Inflammatory Responses in Macrophages through TLR-MyD88 Signaling and Lipid Remodeling - Lipidomics analysis on bone marrow derived macrophages pre-treated with hippuric acid and stimulated with M1-like (LPS+IFNγ) | Macrophages | Mouse | Bacterial infection | The Wistar Institute | LC-MS |
| ST004217 | AN007016 | Lipid Alterations in ASAH1-Deficient Cells: Insights into Ceramide Accumulation and Lysosomal Dysfunction | Cultured cells | Human | Metabolic disease | Harvard Medical School | LC-MS |
| ST004168 | AN006919 | Integrative brain omics approach highlights sn-1 lysophosphatidylethanolamine in Alzheimer's dementia | Brain | Human | Alzheimers disease | Emory University | LC-MS |
| ST004167 | AN006918 | Targeted Lipidomic Profiling of STBD1 Knockdown in Clear Cell Renal Carcinoma Cells | Renal cancer cells | Human | Cancer | The Affiliated Cancer Hospital of Zhengzhou University | LC-MS |
| ST004118 | AN006829 | Lipidomics on Hep3B Cells Overexpressing CGI-158 and PNPLA2 | Cultured cells | Human | Liver disease; Cancer | Amgen | LC-MS |
| ST004049 | AN006694 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004049 | AN006695 | Comparison of lipidome from phagosomes containing Pam3csk4-beads vs. uncoupled-beads | Macrophages | Mouse | St Jude Children's Research Hospital | LC-MS | |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006600 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Human | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST004002 | AN006601 | A deep, quantitative lipid atlas of extracellular vesicles across multiple cell lines | Extracellular vescicles | Mouse | Cancer | European Molecular Biology Laboratory | LC-MS |
| ST003988 | AN006569 | Lipid and cell cycling perturbations driven by the HDAC inhibitor romidepsin render liver cancer vulnerable to RTK targeting and immunologically active | Cultured cells | Human | Cancer | CNRS | LC-MS |
| ST003896 | AN006399 | Postprandial Plasma Metabolomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003896 | AN006399 | Postprandial Plasma Metabolomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003896 | AN006399 | Postprandial Plasma Metabolomic Changes in 147 Individuals Following Ingestion of a Standard Mixed Meal | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003895 | AN006398 | Postprandial Plasma Metabolomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Cardiovascular disease | Nanjing Medical University | Other |
| ST003895 | AN006398 | Postprandial Plasma Metabolomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Diabetes | Nanjing Medical University | Other |
| ST003895 | AN006398 | Postprandial Plasma Metabolomic Changes in 24 Metabolically Healthy Individuals Following Ingestion of Four Different Isocaloric Macronutrients | Blood | Human | Obesity | Nanjing Medical University | Other |
| ST003768 | AN006185 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Leaf | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006185 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Roots | Grass | Hunan Agricultural University | LC-MS | |
| ST003760 | AN006175 | Untargeted lipidomics of combination gemcitabine/paclitaxel attenuated (CombAT) PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003758 | AN006171 | Untargeted lipidomics of gemcitabine-resistant cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003757 | AN006169 | Untargeted lipidomics of gemcitabine-resistant PDAC cells | Pancreas | Human | Cancer | Victor Chang Cardiac Research Institute | LC-MS |
| ST003734 | AN006127 | Altered Omega-6/Omega-3 PUFA Ratios and Phospholipid Profiles in CFTR-Mutant PANC-1 Cells Reveal Novel Links Between CFTR Function and Lipid Metabolism | Pancreas | Human | Cancer | Changhai Hospital | LC-MS |
| ST003717 | AN006098 | Lipidomics analysis of mouse pancreatic cancer cells cultured RPMI, TIFM, or TIFM + arginine under lipid deprivation | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003715 | AN006096 | Lipidomics analysis of mouse PDAC cell lines treated with tung oil | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003714 | AN006095 | Lipidomics analysis of mouse PDAC cell lines treated with alpha-eleostearic acid | Cultured cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003703 | AN006076 | NAD Depletion in Skeletal Muscle does not Compromise Muscle Function or Accelerate Aging | Muscle | Mouse | Sarcopenia | University of Copenhagen | LC-MS |
| ST003694 | AN006060 | FOLFIRINOX effects on lipidomics in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003678 | AN006039 | The effects of cystine limitation stress adaptation (CLSA) on lipidomics changes in pancreatic cancer cells | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003664 | AN006020 | Tumour interstitial fluid-enriched phosphoethanolamine suppresses T cell function. | T-cells | Mouse | Cancer | University of Chicago | LC-MS |
| ST003645 | AN005985 | Targeting the c-MYC/ELOVL6 Pathway Alters Cell Membrane Mechanics and Enhances Chemotherapeutic Efficacy in Pancreatic Cancer | Cultured cells | Human | Cancer | Universidad Francisco de Vitoria - Hospital 12 de Octubre | LC-MS |
| ST003637 | AN005974 | lomitapide effects on lipidomics | Pancreas | Human | Cancer | Pennsylvania State University | LC-MS |
| ST003629 | AN005961 | Impact of human PSMC5 gene mutations on neuronal development: Lipid profiling of PSMC5 mutant T cells | T-cells | Human | Brain disease | Leibniz Institute for Plasma Science and Technology | LC-MS |
| ST003578 | AN005874 | NRF2 supports non-small cell lung cancer growth independently of CBP/p300-enhanced glutathione synthesis | Cultured cells | Human | Cancer | Genentech Inc. | FIA-MS |
| ST003547 | AN005830 | Analysis of the fate of docosahexaenoic acid in HCT116 colorectal cancer cells cultured at pH 7.4 or 6.5. | Cultured cells | Human | Cancer | UCLouvain | LC-MS |
| ST003468 | AN005701 | Lipidomics of mice spleen to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part13 mice spleen lipid) | Spleen | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003465 | AN005695 | Lipidomics of mice kidney to support understanding of early metabolic shift in presymptomatic sepsis patients. (Part10 mice kidney lipid) | Kidney | Mouse | Sepsis | Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute | LC-MS |
| ST003437 | AN005648 | White adipose tissue remodeling in Little Brown Myotis (Myotis lucifugus) with white-nose syndrome | Adipose tissue | Little brown bat | White-nose syndrome | Georgetown University | LC-MS |
| ST003410 | AN005599 | Lipidomics Analysis of ER+ Breast Cancer Cells Treated with Giredestrant and Palbociclib | Cultured cells | Human | Cancer | Genentech Inc. | LC-MS |
| ST003409 | AN005596 | Impact of giredestrant on the lipid profile of MCF-7 breast cancer cells | Cultured cells | Human | Cancer | Genentech Inc. | LC-MS |
| ST003398 | AN005577 | Specific activation of the integrated stress response (ISR) uncovers regulation of lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | LC-MS |
| ST003398 | AN005578 | Specific activation of the integrated stress response (ISR) uncovers regulation of lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | LC-MS |
| ST003341 | AN005476 | Untargeted Lipidomic Profiling of Canine Cancer Cell Lines | Cultured cells | Dog | Cancer | Kojin Therapeutics, Inc. | LC-MS |
| ST003326 | AN005449 | Lipidome profiling in non-alcoholic steatohepatitis identifies phosphatidylserine synthase 1 as a regulator of hepatic lipoprotein metabolism | Liver | Mouse | Liver disease | University of Melbourne | LC-MS |
| ST003291 | AN005390 | Atopic dermatitis and STAT3 double null mutant skin biopsies during healing. | Skin | Human | Eczema | National Institutes of Health | MALDI-MS |
| ST003290 | AN005388 | High expression of oleoyl-ACP-hydrolase underpins life-threatening respiratory viral diseases | Lung | Mouse | Viral infection | Peter Doherty Institute for Infection and Immunity | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003250 | AN005324 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Tectum | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003245 | AN005315 | Exploration of Zeb1-dependent changes in the lipidome of MDA-MB-231 cells | Breast cancer cells | Human | Cancer | University of Innsbruck | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005289 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | LC-MS |
| ST003226 | AN005290 | Lipidomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Glaucoma | University of Miami | LC-MS |
| ST003130 | AN005134 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Maternal blood | Blood | Mouse | University of Copenhagen | LC-MS | |
| ST003125 | AN005124 | Pulmonary maternal immune activation does not extend through the placenta but leads to fetal metabolic adaptation - Fetal liver | Liver | Mouse | Maternal immune system activation | University of Copenhagen | LC-MS |
| ST003101 | AN005074 | Parallel pheromonal, metabolite, and lipid analyses reveal patterns associated with early life transitions and ovary activation in honey bee (Apis mellifera) queens | Bee heads | Honey bee | University of British Columbia | LC-MS | |
| ST002967 | AN004875 | Lipidomics study of FASN inhibition in HT-29 and HCT 116 spheroids | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | LC-MS |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | LC-MS | |
| ST002747 | AN004457 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | LC-MS | |
| ST002713 | AN004397 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - lipidomics | Cultured cells | Human | Cancer | University of Colorado Denver | LC-MS |
| ST002535 | AN004170 | Relationships between the gut microbiome and cognitive impairment in residents of long-term aged care. | Feces | Human | Cognitive impairment | South Australian Health and Medical Research Institute | LC-MS |
| ST002522 | AN004156 | Lipidomics study on the effect of LBP protein on hepatic lipid composition in mice | Liver | Mouse | Oxidative stress | University of Science and Technology of China | LC-MS |
| ST002505 | AN004126 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | LC-MS |
| ST002334 | AN003811 | Phospholipase D3 impact on the endolysosomal lipidome | Cultured cells | Human | Alzheimers disease | VIB-KU Leuven | LC-MS |
| ST002304 | AN003765 | White-nose syndrome disrupts the splenic lipidome of little brown bats (Myotis lucifugus) at early disease stages | Spleen | Little brown bat | White-nose syndrome | Georgetown University | LC-MS |
| ST002281 | AN003725 | Metabolite patterns between isogenic normal hiPSCs and Trisomy hiPSC | iPSC cells | Human | Down syndrome | Guangdong Provincial People's Hospital | APCI-MS |
| ST002195 | AN003593 | Untargeted lipidomics studies in the course of dermatitis onset and progression | Skin | Mouse | Dermatitis | Keio University | LC-MS |
| ST002195 | AN003594 | Untargeted lipidomics studies in the course of dermatitis onset and progression | Skin | Mouse | Dermatitis | Keio University | LC-MS |
| ST002180 | AN003570 | Global, distinctive and personal changes in molecular and microbial profiles induced by specific fibers in humans (Targeted) | Blood | Human | Stanford University | LC-MS | |
| ST002145 | AN003511 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002145 | AN003512 | The Carbohydrate Sensing Transcription Factor ChREBP Links Mitochondrial Lipidomes to Mitochondrial Dynamics and Progression of Diabetic Nephropathy | Cultured cells | Mouse | Diabetes | University of Texas MD Anderson Cancer Center | LC-MS |
| ST002093 | AN003419 | Lipidomics of High Fat vs Control Mice | Lung | Mouse | Obesity | University of North Carolina at Chapel Hill | LC-MS |
| ST002079 | AN003392 | Defining the mammalian coactivation of hepatic 12-hour clock and lipid metabolism | Liver | Mouse | Baylor College of Medicine | Other | |
| ST002070 | AN003375 | Lipidomic Comparison of 2D and 3D Colon Cancer Cell Culture Models | Cultured cells | Human | Cancer | Ohio State University | LC-MS |
| ST001936 | AN004932 | Pseudoexfoliation aqueous humor lipidome suggests enrichment of specific pathways | Eye tissue | Human | Pseudoexfoliation syndrome | University of Miami | LC-MS |
| ST001888 | AN003059 | A Metabolome Atlas of the Aging Mouse Brain (Study part II) | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001738 | AN002830 | AdipoAtlas: A Reference Lipidome for Human White Adipose Tissue | Adipose tissue | Human | Obesity | University of Leipzig | LC-MS |
| ST001725 | AN002810 | Lipidomics dataset of Danio rerio optic nerve regeneration model | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST001687 | AN002755 | Non-transformed cells respond to fat by inducing glucose metabolism | Liver | Mouse | VIB-KU Leuven Center for Cancer Biology | LC-MS | |
| ST001637 | AN002677 | A Metabolome Atlas of the Aging Mouse Brain | Brain | Mouse | University of California, Davis | GC-MS/LC-MS | |
| ST001490 | AN002468 | Plasma lipidomic profiles after a low and high glycemic load dietary pattern in a randomized controlled cross over feeding study | Blood | Human | Fred Hutchinson Cancer Research Center | FIA-MS | |
| ST001477 | AN002453 | Lipidomics dataset of PTEN deletion-induced nerve regeneration mouse model | Eye tissue | Mouse | Eye disease | University of Miami | LC-MS |
| ST001363 | AN002269 | Monophasic lipidomics extraction in cancer cell lines | Hep G2 cells | Human | Cancer | Institute of Genetics and Molecular Medicine | LC-MS |
| ST001345 | AN002239 | C56BL6 WT or IFNARKO BMDM stimulated with different TLRs (part-V) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001344 | AN002238 | C56BL6 WT or MyD88KO BMDM stimulated with different TLRs (part-IV) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001343 | AN002237 | C56BL6 WT or TRIFKO BMDM stimulated with different TLRs (part-III) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001342 | AN002236 | Timecourse of C56BL6 BMDM stimulated with different TLRs (part-I) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001341 | AN002235 | C56BL6 BMDM stimulated with different TLRs W/O acetylated LDL (part-II) | Macrophages | Mouse | University of California, Los Angeles | MS(Dir. Inf.) | |
| ST001272 | AN002112 | Growth cone memebrane and growth cone particulate lipidomics | Brain | Mouse | Eye disease | University of Miami | LC-MS |
| ST001267 | AN002104 | Mass spectrometry-based lipidomics of oral squamous cell carcinoma tissue reveals aberrant cholesterol and glycerophospholipid metabolism | Tongue | Human | Cancer | University of Helsinki | MS(Dir. Inf.) |
| ST001259 | AN002089 | Targeted Metabolomic Analysis in Patients with Wilson Disease Reveals Dysregulated Choline, Methionine and Aromatic Amino Acid Metabolism: Implications for Hepatic and Neurological Phenotypes | Blood | Human | Wilson disease | University of California, Davis | LC-MS |
| ST001115 | AN001811 | Growth cone-enriched lipidome of embryonic to early postnatal mouse brain | Brain | Mouse | Eye disease | University of Miami | LC-MS |
| ST001106 | AN001800 | Lipidomics of Newborn Heart Tissue Exposed to Excess Maternal Cortisol in Late Gestation (part-1) | Heart | Sheep | University of Florida | LC-MS | |
| ST001061 | AN001732 | Lipidomics of Near-Term Fetal and Newborn Sheep Cardiac Tissue | Heart | Sheep | University of Florida | LC-MS | |
| ST000963 | AN001577 | Lipidomics of inflammation-induced optic nerve regeneration | Eye tissue | Rat | Eye disease | University of Miami | LC-MS |
| ST000608 | AN000929 | Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies | Blood | Human | Pacific Northwest National Laboratory | GC-MS/LC-MS |