List of Studies ( Metabolite:Phe-His)
| Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Analysis Type |
|---|---|---|---|---|---|---|---|
| ST004153 | AN006895 | Multi-omics Study of Small Intestine Adaptation After Total Colectomy in a Rat model | Feces | Rat | Shanghai Jiao Tong University | LC-MS | |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Eggerthella lenta | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003911 | AN006421 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 4 | Bacterial cells | Fusobacterium nucleatum | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Bifidobacteria | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Clostridium | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Escherichia coli | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003910 | AN006418 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 3. | Bacterial cells | Streptococcus | Inflammatory bowel disease | Broad Institute of MIT and Harvard | LC-MS |
| ST003799 | AN006244 | Molecular fingerprint inference reveals bioactive lipids and microbial metabolites in colitis. Study 2. | Cultured cells | Dorea longicatena | Colitis | Broad Institute of MIT and Harvard | LC-MS |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Leaf | Grass | Hunan Agricultural University | LC-MS | |
| ST003768 | AN006186 | The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass | Roots | Grass | Hunan Agricultural University | LC-MS | |
| ST003213 | AN005269 | The central role of creatine and polyamines in fetal growth restriction | Placenta | Human | Placenta disease | University of Udine | LC-MS |
| ST002977 | AN004889 | Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant | Feces | Human | University of Michigan | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | LC-MS | |
| ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | LC-MS | |
| ST002775 | AN004518 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | LC-MS |
| ST002106 | AN003444 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | LC-MS |
| ST001794 | AN002911 | Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples | Jejunum | Human | University of California, Davis | LC-MS | |
| ST001402 | AN002344 | Ontogeny related changes in the pediatric liver metabolome | Liver | Human | Moffitt Cancer Center | LC-MS | |
| ST000867 | AN001396 | Metabolic Profiling of Date Palm Fruits (part II) | Date palm fruit | Date palm | Weill Cornell Medicine, Qatar | GC-MS/LC-MS | |
| ST000508 | AN000778 | Metabolic Profiling of Date Palm Fruits | Plant | Date palm | Weill Cornell Medicine, Qatar | GC-MS/LC-MS |