List of Studies ( Metabolite:Prephenic acid)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST003104 | AN005083 | Metabolomics studies on human cardiac samples | Heart | Human | Heart disease | University of Sydney | abundance |
ST003252 | AN005328 | Metabolomics studies on mouse cardiac samples on a Western diet | Heart | Mouse | Obesity; Diabetes; Hypertension; Hyperglycemia | University of Sydney | abundance |
ST003253 | AN005331 | Metabolomics studies on mouse liver samples on a Western diet | Liver | Mouse | Obesity; Diabetes; Hypertension; Hyperglycemia | University of Sydney | abundance |
ST002316 | AN003783 | Differential requirements for mitochondrial electron transport chain components in the adult murine liver - Untargeted Metabolomics (qTOF) | Liver | Mouse | Metabolic syndrome | The University of Texas Southwestern Medical Center at Dallas | area |
ST002234 | AN003644 | A metabolic map of the DNA damage response identifies PRDX1 in nuclear ROS scavenging and aspartate synthesis | Cultured cells | Human | DNA damage response | CRG | au |
ST002123 | AN003476 | GCN2 regulates mitochondrial OXPHOS in HSPCs under proliferation conditions. | Bone marrow | Mouse | Sun Yat-sen University | AU | |
ST002373 | AN003868 | Extracellular metabolome of activated CD8+ T cells | Cultured cells | Mouse | Johns Hopkins University | AUC | |
ST001980 | AN003230 | Metabolomic profiles in S. mutans, S. gordonii, and S. oralis cells treated with D-tagatose | Bacterial cells | Streptococcus | Osaka University | intensity | |
ST000148 | AN000235 | A549 13C-labeled Cell Study | Epithelial cells | Human | Cancer | University of Kentucky | normalized corrected peak area |
ST002011 | AN003279 | The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. | Blood | Plasmodium falciparum | Malaria | Pennsylvania State University | peak area |
ST002078 | AN003389 | Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. | Cultured cells | Plasmodium falciparum | Malaria | Pennsylvania State University | peak area |
ST000142 | AN000225 | H1299 13C-labeled Cell Study | Lung | Human | Cancer | University of Kentucky | Peak area |
ST001232 | AN002050 | Combining stage - specificity and metabolomic profiling to advance drug discovery for malaria | Cultured cells | Plasmodium falciparum | Malaria | Pennsylvania State University | Peak area |
ST001382 | AN002303 | Distinct metabolic states of a cell guide alternate fates of mutational buffering through altered proteostasis | Bacterial cells | E. coli | CSIR National Chemical Laboratory | Peak intensity | |
ST002541 | AN004187 | Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids (Part 1) | Yeast cells | Yeast | Life Sciences Institute, ZheJiang University | Peak intensity | |
ST002542 | AN004189 | Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids (Part 2) | Yeast cells | Yeast | Life Sciences Institute, ZheJiang University | Peak intensity | |
ST001299 | AN002163 | Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran | Intestine | Mouse | The Pennsylvania State University (Penn State) | ppm | |
ST002082 | AN003397 | Predicting dying: a study of the metabolic changes and the dying process in patients with lung cancer | Urine | Human | Cancer | University of Liverpool Institute of Life Course & Medical Sciences | Values are raw peak area |