Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Pro-Asp)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST003642 AN005981 Hexosamine Biosynthesis Disruption Impairs GPI Production and Arrests Plasmodium falciparum Growth at Schizont Stages Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST003565 AN005857 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST002998 AN004925 The role of gut microbiota in muscle mitochondria function, colon health, and sarcopenia: from clinical to bench Bacterial cells Bacteria Sarcopenia Chinese University of Hong Kong GC/LC-MS
ST002977 AN004887 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004889 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China LC-MS
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human University of California, Davis LC-MS
ST002405 AN003919 Stool global metabolite levels in peanut allergy (Part 2) Feces Human Peanut allergy Icahn School of Medicine at Mount Sinai LC-MS
ST002309 AN003771 Targeting malaria parasites with novel derivatives of azithromycin Blood Plasmodium falciparum Malaria Monash University LC-MS
ST002306 AN003768 Metabolomics profiling of full extracts of bacterial culture supernatants. Bacterial cells Bacillus megaterium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut LC-MS
ST002306 AN003768 Metabolomics profiling of full extracts of bacterial culture supernatants. Bacterial cells Enterococcus faecium Myalgic encephalomyelitis/chronic fatigue syndrome University of Connecticut LC-MS
ST002247 AN003670 Microbiota and Health Study (Dhaka, Bangladesh) Feces Human Broad Institute of MIT and Harvard LC-MS
ST002078 AN003387 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003388 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003389 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003390 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002024 AN003294 Plasmodium falciparum stable-isotope carbon labeling to explore metabolic consequences of keto–acid dehydrogenase disruption Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003277 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003278 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003279 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002009 AN003275 Metabolomics analysis of stress erythroid progenitors Stem cells Mouse Inflammation Pennsylvania State University LC-MS
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Human Malaria Pennsylvania State University LC-MS
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Human Malaria Pennsylvania State University LC-MS
ST001985 AN003236 Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001660 AN002711 Plasmodium falciparum metabolomics as a result of treatment with putative acetyl-CoA synthetase inhibitors Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Hepatopancreas Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences LC-MS
ST001315 AN002189 Retargeting azithromycin-like compounds as antimalarials with dual modality Blood Plasmodium falciparum Malaria Monash University LC-MS
ST001279 AN002120 K13 mutations driving artemisinin resistance rewrite Plasmodium falciparum’s programmed intra-erythrocytic development and transform mitochondrial physiology Parasite Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001232 AN002050 Combining stage - specificity and metabolomic profiling to advance drug discovery for malaria Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001188 AN001980 P. falciparum infected erythrocytes Cultured cells Plasmodium falciparum Malaria University of Melbourne LC-MS
ST001149 AN001896 Plasmodium Niemann-Pick Type C1-Related Protein is a Druggable Target Required for Parasite Membrane Homeostasis Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST001074 AN001756 Open source discovery of starting points for next generation chemoprotective antimalarial drugs (Biofocus 1) Parasite Human Pennsylvania State University LC-MS
ST000441 AN000692 Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways Plasmodium cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST000046 AN000078 Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (plasma) Blood Human Alzheimers disease Mayo Clinic LC-MS
  logo