Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Pro-Glu)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteAnalysis Type
ST003790 AN006230 Fecal metabolomics of B16-OVA tumor-bearing mice fed chow or low and high fiber purified diets and treated with isotype control or anti-PD-1 antibody Feces Mouse Cancer Princeton University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Leaf Grass Hunan Agricultural University LC-MS
ST003768 AN006185 The Chromosome-Scale Assembly and Multi-Omics Analysis Reveal Adaptive Evolution and Nitrogen Utilization Mechanisms in Edible Grass Roots Grass Hunan Agricultural University LC-MS
ST003565 AN005857 Metaboloomics analysis of the antimalarial compound WEHI-1888504 (aka compound 59) in Plasmodium falciparum (3D7) infected red blood cells Cultured cells Plasmodium falciparum Malaria Monash University LC-MS
ST003378 AN005533 Effects of Aldehydes on lipid metabolism in mice Liver Mouse Liver disease Feinstein Institutes for Medical Research LC-MS
ST003378 AN005533 Effects of Aldehydes on lipid metabolism in mice Liver Mouse Obesity Feinstein Institutes for Medical Research LC-MS
ST003356 AN005497 Noninvasive multiomic measurement of cell type repertoires in human urine Urine Human Urinary tract infection CZ Biohub LC-MS
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University LC-MS
ST003066 AN005022 Heritability of RBC metabolites: baseline correlation of metabolites and markers of RBC health and stability Erythrocytes Human University of Iowa Other
ST002977 AN004888 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002977 AN004890 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University LC-MS
ST002832 AN004626 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University LC-MS
ST002787 AN004534 Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome Feces Human Cancer Wuhan University of Science and Technology LC-MS
ST002759 AN004480 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney Rat Medical College of Wisconsin LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004454 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Human CZ Biohub LC-MS
ST002747 AN004455 Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections Cultured cells Rickettsia parkeri CZ Biohub LC-MS
ST002512 AN004136 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002512 AN004137 Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta Intestine Mouse University of California, San Francisco LC-MS
ST002505 AN004126 A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) Cultured cells Human Cancer University of Science and Technology of China LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Apple Northeastern University; Massachusets Institute of Technology LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Basil Northeastern University; Massachusets Institute of Technology LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Garlic Northeastern University; Massachusets Institute of Technology LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Lettuce Northeastern University; Massachusets Institute of Technology LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Strawberry Northeastern University; Massachusets Institute of Technology LC-MS
ST002493 AN004086 Composition of raw plant-based food items Pilot Study Plant Tomato Northeastern University; Massachusets Institute of Technology LC-MS
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human University of California, Davis LC-MS
ST002094 AN003420 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic LC-MS
ST002094 AN003421 Commensal intestinal microbiota regulates host luminal proteolytic activity and intestinal barrier integrity through β-glucuronidase activity (Part 1) Feces Human Irritable bowel syndrome Mayo Clinic LC-MS
ST002078 AN003387 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003388 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003389 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002078 AN003390 Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. Cultured cells Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003277 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003278 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002011 AN003279 The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. Blood Plasmodium falciparum Malaria Pennsylvania State University LC-MS
ST002009 AN003275 Metabolomics analysis of stress erythroid progenitors Stem cells Mouse Inflammation Pennsylvania State University LC-MS
ST001794 AN002912 Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples Jejunum Human University of California, Davis LC-MS
ST001745 AN002838 Metabolomic profiling of the rat hippocampus across developmental ages and after learning Brain Rat New York University LC-MS
ST001658 AN002706 Control of Topoisomerase II Activity and Chemotherapeutic Inhibition by TCA Cycle Metabolites Yeast cells Yeast Cancer Johns Hopkins University LC-MS
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Hepatopancreas Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences LC-MS
ST001299 AN002163 Metatranscriptomic Analysis of the Mouse Gut Microbiome Response to the Persistent Organic Pollutant 2,3,7,8-Tetrachlorodibenzofuran Cecum Mouse Pennsylvania State University LC-MS
ST000974 AN001595 GC6-74 matabolomic of TB (Part 1: Plasma) Blood Human Tuberculosis Max Planck Institute for Infection Biology LC-MS
  logo