List of Studies ( Metabolite:Pyrroline hydroxycarboxylic acid)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST001855 | AN003006 | The metabolomic resetting effect of FG4592 in AKI to CKD transition-day 21 (Part 1) | Kidney | Mouse | Kidney disease | Children's Hospital of Nanjing Medical University | AUC |
ST001610 | AN002644 | Control (DMSO 0.1%; v/v) and 10 µM DRB18 treated A549 lung cancer cells in vitro for 48 hours | Lung | Human | Cancer | Ohio University | Normalized abundances |
ST002467 | AN004023 | Nano-hijacked myeloid cells potentiate antitumor immunity and radiotherapy for glioblastoma | Brain | Mouse | Cancer | Northwestern University, Feinberg School of Medicine | Normalized peak area |
ST000164 | AN000257 | Metabolomic analysis of normal and diabetic mouse bone marrow under PBS or metformin treatment | Bone marrow | Mouse | Diabetes | New York University | Peak area |
ST000242 | AN000377 | Whole unconditioned medium (Defined culture media, M199),Whole M1 medium,Whole M2 medium | Macrophages | Human | Mayo Clinic | Peak area | |
ST002846 | AN004664 | Apolipoprotein E suppresses hyperlipidemia-driven hematopoiesis & inflammation by controlling mitochondrial metabolism | Macrophages | Mouse | Hyperlipidemia | Northwestern University | Peak area |
ST002876 | AN004713 | High Level Expression of NSD2 Creates a Metabolic Dependency in Multiple Myeloma | B-cells | Human | Cancer | University of Florida | Peak area |
ST003249 | AN005322 | Mitochondrial respiration impairment in microglia dampens response to demyelinating injury but is not sufficient to induce an aging phenotype | Microglia | Mouse | Alzheimers disease | Northwestern University | Peak area |
ST003262 | AN005346 | A Covalent Creatine Kinase Inhibitor Ablates Glioblastoma Migration and Sensitizes Tumors to Oxidative Stress. | Brain | Human | Cancer | Northwestern University, Feinberg School of Medicine | Peak area |
ST003024 | AN004958 | Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 1 | Bacterial cells | Pseudomonas aeruginosa | Monash Institute of Pharmaceutical Sciences | peak height | |
ST000421 | AN000665 | ms3076 T1D poor glycemic control and control samples | Blood | Human | Diabetes | Mayo Clinic | Peak intensity |