List of Studies ( Metabolite:Ribose 1-phosphate)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST002497 | AN004101 | Postnatal hyperglycemia alters amino acid profile in retinas | Retina | Mouse | Eye disease | Boston Childrens Hospital | Absolute Intensity |
ST002830 | AN004623 | L-isoleucine in P10 STZ | Retina | Mouse | Retinopathy of prematurity | Boston Childrens Hospital | abundance/intensity |
ST001447 | AN002418 | Metabolomics of lung injury after allogeneic hematopoietic cell transplantation - Colon ICMS | Intestine | Mouse | Graft versus host disease | University of Kentucky | abundance & normalized peak area |
ST001453 | AN002428 | Metabolomics of lung injury after allogeneic hematopoietic cell transplantation - Liver ICMS | Liver | Human | Graft versus host disease | University of Kentucky | abundance & normalized peak area |
ST001470 | AN002446 | Metabolomics of lung injury after allogeneic hematopoietic cell transplantation - Lung ICMS | Mouse | Graft versus host disease | University of Kentucky | abundance & normalized peak area | |
ST001472 | AN002448 | Metabolomics of lung injury after allogeneic hematopoietic cell transplantation - Small Intestines ICMS | SI | Mouse | Graft versus host disease | University of Kentucky | abundance & normalized peak area |
ST000509 | AN000781 | Metabolic changes to maternal rat liver tissue during and post-pregnancy | Liver | Rat | University of Colorado, Denver | Arbitrary units | |
ST003102 | AN005076 | Cellular adaptation to cancer therapy occurs by progressive state transitions along a resistance continuum | Ovarian cancer cells | Human | Cancer | NYU Langone Health | Arbitrary units |
ST002831 | AN004624 | Folate depletion upregulates heme synthesis | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | Arbitrary Units |
ST003018 | AN004952 | Polar metabolite levels in K562 cells following PKC inhibition in 2,000 nM or 100 nM FA conditions | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | Arbitrary Units |
ST003020 | AN004954 | Polar metabolite levels in MEL cells following PKC inhibition in 2,000 nM or 100 nM FA conditions | Cultured cells | Mouse | Anemia | Boston Children's Hospital, Harvard Medical School | Arbitrary Units |
ST003254 | AN005336 | The impact of grass- and grain-finishing on metabolomic profiles of North American Black Angus Beef cattle. | Bovine meat | Cow | Duke University | Arbitrary Units | |
ST001143 | AN001884 | Microbial depletion and ozone exposure - Lung tissue (part I) | Lung | Mouse | Asthma | Harvard School of Public Health | Area under curve |
ST003519 | AN005777 | Effect of insluin on metabolism of ex vivo ischemia heart | Heart | Brown Rat | Heart disease | Mayo Clinic | Area under the Curve |
ST002708 | AN004390 | Levels of central carbon metabolites in choroid plexus as part of natural diurnal variation | Brain | Mouse | Circadian Rhythm Disorder | Boston Childrens Hospital | a.u. |
ST003088 | AN005051 | Metabolome changes in embryonic CSF (Part 10) | Blood | Mouse | Autism | Boston Children's Hospital, Harvard Medical School | a.u. |
ST003088 | AN005051 | Metabolome changes in embryonic CSF (Part 10) | CSF | Mouse | Autism | Boston Children's Hospital, Harvard Medical School | a.u. |
ST003088 | AN005051 | Metabolome changes in embryonic CSF (Part 10) | Liver | Mouse | Autism | Boston Children's Hospital, Harvard Medical School | a.u. |
ST003546 | AN005828 | Improved Soil Health and Pasture Phytochemical Richness Underlies Improved Beef Nutrient Density in Southern US Grass-Finished Beef Systems | Muscle | Cattle | Utah State University | AU | |
ST001850 | AN002997 | Unbiased LC-MS-based metabolomics analysis for both whole cell and mitochondria metabolites to gain an insight into the role of Tug1/PGC1 axis on metabolite profiles in podocytes | Epithelial cells | Mouse | University of Texas MD Anderson Cancer Center | AUC/ngDNA | |
ST002555 | AN004207 | Ethnicity-Specific Differences in Ovarian Cancer Metabolic Signatures | Cultured cells | Human | Cancer | University of Oklahoma Health Sciences Center | Fold change over standard |
ST002327 | AN003796 | Effect of PARK7 gene KO on midbrain organoids | Cultured cells | Human | Icahn School of Medicine at Mount Sinai | intensity | |
ST003323 | AN005438 | Global Metabolomics and U-13C6-Glucose Tracing in Bone Marrow Derived Macrophages (BMDM) | Bone marrow | Mouse | Immune system disorders | University of Colorado Anschutz Medical Campus | Intensity Counts |
ST001860 | AN003015 | Spontaneous hydrolysis and spurious metabolic properties of α-ketoglutarate esters | Cultured cells | Human | University of British Columbia | ion counts | |
ST002847 | AN004665 | Targeting Pancreatic Cancer Metabolic Dependencies through Glutamine Antagonism. | Cultured cells | Mouse | Cancer | New York University | ion counts |
ST003405 | AN005589 | Specific activation of the integrated stress response uncovers regulation of central carbon metabolism and lipid droplet biogenesis | Cultured cells | Human | Cancer | Calico Life Sciences | log2 peak area top |
ST002822 | AN004602 | Effect of ERR Agonist in Mouse Heart Post Pressure Overload | Heart | Mouse | Baylor College of Medicine | log transformed data | |
ST001474 | AN004409 | Metabolomics of lung injury after allogeneic hematopoietic cell transplantation - Spleen ICMS | Multiple tissues | Mouse | Graft versus host disease | University of Kentucky | natural abundance corrected and dry residue normalized peak area |
ST002174 | AN003562 | Identifying a tryptophan derivative in hydrogen peroxide-treated cell culture medium | Media | Abiotic | NYU Langone Health | N/L | |
ST001136 | AN001862 | Metabolme analysis of OPC-163493 on the Liver of ZDF rats (part-II) | Liver | Rat | Diabetes | Otsuka Pharmaceuticals | nmol/g tissue |
ST001864 | AN003021 | Targeting host glycolysis as a strategy for antimalarial development | Blood | Human | Malaria | University of Colorado Anschutz Medical Campus | peak area |
ST001996 | AN003256 | Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells (Part 1) | Macrophages | Mouse | University of Colorado Denver | peak area | |
ST001997 | AN003258 | Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells (Part 2) | Macrophages | Mouse | University of Colorado Denver | peak area | |
ST001998 | AN003260 | Polyamine import and accumulation causes immunomodulation in macrophages engulfing apoptotic cells (Part 3) | Macrophages | Mouse | University of Colorado Denver | peak area | |
ST002213 | AN003618 | Metabolic changes in Alzheimer patient-derived induced neurons versus non-demented controls | Fibroblast cells | Human | Alzheimers disease | University of Colorado Denver | peak area |
ST002213 | AN003620 | Metabolic changes in Alzheimer patient-derived induced neurons versus non-demented controls | Fibroblast cells | Human | Alzheimers disease | University of Colorado Denver | peak area |
ST002214 | AN003622 | The effects of PKM2 modulation and hypoxia on the metabolic landscape of Alzheimer patient-derived induced neurons | Fibroblast cells | Human | Alzheimers disease | University of Colorado Denver | peak area |
ST002485 | AN004056 | Simultaneous targeting of PD-1 and IL2Rβγ with radiation therapy to inhibit pancreatic cancer growth and metastasis - mouse serum metabolomics | Blood | Mouse | Cancer | University of Colorado Denver | peak area |
ST002486 | AN004058 | Simultaneous targeting of PD-1 and IL2Rβγ with radiation therapy to inhibit pancreatic cancer growth and metastasis - mouse blood T-cell metabolomics | T-cells | Mouse | Cancer | University of Colorado Denver | peak area |
ST002487 | AN004060 | Simultaneous targeting of PD-1 and IL2Rβγ with radiation therapy to inhibit pancreatic cancer growth and metastasis - mouse spleen and lymph node T-cell metabolomics | Spleen | Mouse | Cancer | University of Colorado Denver | peak area |
ST002487 | AN004060 | Simultaneous targeting of PD-1 and IL2Rβγ with radiation therapy to inhibit pancreatic cancer growth and metastasis - mouse spleen and lymph node T-cell metabolomics | T-cells | Mouse | Cancer | University of Colorado Denver | peak area |
ST002712 | AN004395 | Ranolazine induced metabolic rewiring improves melanoma responses to targeted therapy and immunotherapy - metabolomics | Cultured cells | Human | Cancer | University of Colorado Denver | peak area |
ST002714 | AN004399 | Loss of microglial MCT4 leads to defective synaptic pruning and anxiety-like behavior in mice | Brain | Mouse | University of Colorado Denver | peak area | |
ST002895 | AN004754 | Polar metabolite levels in K562 cells following folate depletion and inosine supplementation | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002896 | AN004755 | Polar metabolite levels in MEL cells following folate depletion and inosine supplementation | Cultured cells | Mouse | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002897 | AN004756 | Polar metabolite levels in K562 cells following folate depletion, SHIN1 or AICAR treatment | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002898 | AN004757 | Polar metabolite levels in MEL cells following folate depletion, SHIN1 or AICAR treatment | Cultured cells | Mouse | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002906 | AN004769 | Polar metabolite levels in K562 cells following short-term folate depletion | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002912 | AN004782 | Polar metabolite levels in MEL cells following folate depletion | Cultured cells | Mouse | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST002913 | AN004783 | Polar metabolite levels in K562 cells following folate depletion | Cultured cells | Human | Anemia | Boston Children's Hospital, Harvard Medical School | peak area |
ST003315 | AN005428 | Randomized phase II trial of pre-operative fulvestrant with or without enzalutamide for ER+/Her2- primary breast cancer: effects on tumor immune microenvironment and clinical outcomes. | Blood | Human | Cancer | University of Colorado Anschutz Medical Campus | peak area |
ST003331 | AN005456 | Increased Cholesterol Synthesis Drives Neurotoxicity in Patient Stem Cell-Derived Model of Multiple Sclerosis - cellular metabolomics | Stem cells | Human | Multiple sclerosis | University of Colorado Denver | peak area |
ST003484 | AN005721 | Metabolism of TNBC cell line MDA-MB-453 is altered by cytokines, TDO2 inhibition, or suspension growth conditions - cellular steady state metabolome and in vitro tracing with 13C11 tryptophan | Tumor cells | Human | Cancer | University of Colorado Anschutz Medical Campus | peak area |
ST002725 | AN004416 | Metabolic and Proteomic Divergence is Present in Circulating Monocytes and Tissue Resident Macrophages from Berkeley Sickle Cell Anemia and B-thalassemia mice (PBMC's) | Mononuclear cells | Mouse | Sickle cell disease | University of Colorado School of Medicine | :Peak area |
ST001735 | AN002825 | The COVIDome Explorer Researcher Portal (Red Blood Cells) | Blood | Human | COVID-19 | University of Colorado Anschutz Medical Campus | Peak area |
ST001736 | AN002827 | The COVIDome Explorer Researcher Portal (blood plasma) | Blood | Human | COVID-19 | University of Colorado Anschutz Medical Campus | Peak area |
ST003540 | AN005812 | Metabolomic analysis of fluorescent hairy roots overexpressing the Gretchen Hagen 3_61 genes enhancing soybean resistance to cyst nematodes | Plant Root | Soyabean | Shenyang Agricultural University | Peak area | |
ST002726 | AN004418 | Metabolic and Proteomic Divergence is Present in Circulating Monocytes and Tissue Resident Macrophages from Berkeley Sickle Cell Anemia and B-thalassemia mice (Spleen) | Macrophages | Mouse | Sickle cell disease | University of Colorado School of Medicine | Peak Area |
ST002754 | AN004471 | Metabolomics analysis of maternal obesity model | Blood | Mouse | Fatty liver disease | University of Bonn | Peak Area |
ST003111 | AN005095 | Inhibition of Asparagine Synthetase Effectively Retards Polycystic Kidney Disease Progression, investigated with targeted metabolomics in Tam-Cre;Pkd1ΔC/flox mouse model kidneys. | Kidney | Mouse | Kidney disease | San Raffaele University | Peak Area |
ST003166 | AN005194 | Metabolomics of Murine WT or MCJ KO CD19-BBz CD8 CAR-T cells | T-cells | Mouse | Cancer | University of Colorado School of Medicine | Peak Area |
ST003170 | AN005202 | Metabolomics of Murine WT or MCJ KO CD19-BBz CD8 CAR-T cells rest in medium | T-cells | Mouse | Cancer | University of Colorado School of Medicine | Peak Areas |
ST002031 | AN003302 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Whole blood) | Blood | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002032 | AN003304 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Blood plasma) | Blood | Mouse | University of Colorado Anschutz School of Medicine | peak area top | |
ST002033 | AN003306 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Feces-part1) | Feces | Mouse | University of Colorado Anschutz School of Medicine | peak area top | |
ST002034 | AN003308 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Feces-part2) | Feces | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002035 | AN003310 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Heart) | Heart | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002036 | AN003312 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Kidney) | Kidney | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002037 | AN003314 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Liver) | Liver | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002038 | AN003316 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Duodenum) | Duodenum | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002039 | AN003318 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Brain) | Brain | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002040 | AN003320 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Colon) | Colon | Mouse | University of Colorado Anschutz School of Medicine | peak area top | |
ST002041 | AN003322 | Irradiation causes alterations of polyamine, purine and sulfur metabolism in red blood cells and multiple organs (Spleen) | Spleen | Mouse | University of Colorado Anschutz Medical Campus | peak area top | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | Peak height | |
ST001154 | AN001945 | A comprehensive plasma metabolomics dataset for a cohort of mouse knockouts within the International Mouse Phenotyping Consortium | Blood | Mouse | University of California | Peak height normalized with creatinine | |
ST002493 | AN004087 | Composition of raw plant-based food items Pilot Study | Plant | Plants | Massachusetts Institute of Technology | peak intensity | |
ST002541 | AN004187 | Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids (Part 1) | Yeast cells | Yeast | Life Sciences Institute, ZheJiang University | Peak intensity | |
ST002542 | AN004189 | Methionine restriction constrains lipoylation and activates mitochondria for nitrogenic synthesis of amino acids (Part 2) | Yeast cells | Yeast | Life Sciences Institute, ZheJiang University | Peak intensity | |
ST000451 | AN000707 | The alpha-1A adrenergic receptor agonist A61603 reduces cardiac polyunsaturated fatty acid-Heart raw data | Muscle | Mouse | University of North Carolina | Peak values (scaled) | |
ST001135 | AN001861 | Different dose exposure of OPC-163493 on HepG2 cells (part-I) | Hep G2 cells | Human | Diabetes | Otsuka Pharmaceuticals | pmol/1000000 cells |
ST002743 | AN004448 | Metabolomics comparison of lung fibroblasts from Pteropus alecto and Homo sapiens | Cultured cells | Black flying fox fruit bat | Duke-NUS Medical School | pmol/10^6 cells | |
ST002743 | AN004448 | Metabolomics comparison of lung fibroblasts from Pteropus alecto and Homo sapiens | Cultured cells | Human | Duke-NUS Medical School | pmol/10^6 cells | |
ST001745 | AN002841 | Metabolomic profiling of the rat hippocampus across developmental ages and after learning | Brain | Rat | New York University | pmoles/l | |
ST002281 | AN003726 | Metabolite patterns between isogenic normal hiPSCs and Trisomy hiPSC | iPSC cells | Human | Down syndrome | Guangdong provincial people's hospital | pmoles/l |
ST001759 | AN002866 | Application of the redox metabolite detection method for mouse liver | Liver | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001760 | AN002867 | Application of the redox metabolite detection method for mouse kidney | Kidney | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001762 | AN002869 | Application of the redox metabolite detection method for mouse kidney (part II) | Kidney | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001763 | AN002870 | Application of the redox metabolite detection method for mouse liver (part II) | Liver | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001764 | AN002871 | Application of the redox metabolite detection method for profiling redox state following pharmacologic perturbation with methotrexate | Cultured cells | Human | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001765 | AN002872 | Optimization of redox metabolite detection in mammalian cells (part I) | Cultured cells | Human | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001766 | AN002873 | Application of the redox metabolite detection method for mammalian tissues (part I) | Kidney | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001766 | AN002873 | Application of the redox metabolite detection method for mammalian tissues (part I) | Liver | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001768 | AN002875 | Application of the redox metabolite detection method for mammalian tissues (part III) | Kidney | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001768 | AN002875 | Application of the redox metabolite detection method for mammalian tissues (part III) | Liver | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001769 | AN002876 | Application of the redox metabolite detection method for profiling redox state following pharmacologic perturbations of redox balance in cells (part I) | Cultured cells | Human | Boston Childrens Hospital | ppm | |
ST001770 | AN002877 | Application of the redox metabolite detection method for profiling redox state following pharmacologic perturbations of redox balance in cells (part II) | Cultured cells | Human | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001771 | AN002878 | Application of the redox metabolite detection method for profiling redox state following pharmacologic perturbations of redox balance in cells (part III) | Cultured cells | Human | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001772 | AN002879 | Optimization of redox metabolite detection in mammalian cells (part II) | Cultured cells | Human | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001773 | AN002880 | Application of the redox metabolite detection method for mouse biofluids (part II) | Blood | Mouse | Boston Children's Hospital, Harvard Medical School | ppm | |
ST001975 | AN003223 | Anti-oxidative metabolism measurement in mammalian cells and tissues by quantitative LC/MS method (II) | Cerebrospinal fluid | Mouse | Cancer | Boston Children's Hospital, Harvard Medical School | ppm |
ST001977 | AN003225 | Anti-oxidative metabolism measurement in mammalian cells and tissues by quantitative LC/MS method (IV) | Cerebrospinal fluid | Human | Cancer | Boston Children's Hospital, Harvard Medical School | ppm |
ST001978 | AN003226 | Anti-oxidation metabolism measurement in mammalian cells and tissues by quantitative LC/MS method (V) | Cerebrospinal fluid | Human | Cancer | Boston Children's Hospital, Harvard Medical School | ppm |
ST001983 | AN003234 | Metabolomic Fingerprinting of Human High Grade Serous Ovarian Carcinoma Cell Lines | Ovarian cancer cells | Human | Cancer | University of Oklahoma Health Sciences Center | ratio |
ST001243 | AN002066 | Global Metabolic Analysis Trisomy 21 - Cohort 1 | Blood | Human | Down syndrome | University of Colorado, Denver | Relative Abundance |
ST001644 | AN002689 | In Vitro Characterization and Metabolomic Analysis of Cold-Stored Platelets | Blood | Human | University of Colorado Anschutz Medical Campus | Relative Abundance | |
ST001730 | AN002816 | Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance | Cultured cells | Human | Cancer | University of Colorado Denver | Relative Abundance |
ST001731 | AN002818 | Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance (part-II) | Cultured cells | Human | Cancer | University of Colorado Denver | Relative Abundance |
ST001732 | AN002820 | Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance (part-III) | Cultured cells | Human | Cancer | University of Colorado Anschutz Medical Campus | Relative Abundance |
ST002110 | AN003452 | Towards a mechanistic understanding of patient response to neoadjuvant SBRT with anti-PDL1 in human HPV-unrelated locally advanced HNSCC: Phase I/Ib trial results (Part 2) | Blood | Human | Cancer | University of Colorado Denver | Relative Abundance |
ST002263 | AN003697 | Intermittent fasting induces rapid hepatocyte proliferation to maintain the hepatostat | Liver | Mouse | Stanford University | relative counts | |
ST002510 | AN004134 | Strain supernatants: Strain diversity of Eggerthella lenta metabolites in defined media | Bacterial culture supernatant | Eggerthella lenta | University of California, San Francisco | relative ion counts | |
ST001869 | AN003031 | WNK463 Inhibition on Right Ventricular metabolomics | Heart | Rat | Hypertension | University of Minnesota | relative value |
ST001870 | AN003032 | Effects of GP130 Antagonism on Right Ventricular Metabolism in Monocrotaline Rats | Heart | Rat | University of Minnesota | relative value | |
ST001198 | AN001994 | Targeted LC-MS/MS Analysis of Soluble Metabolites in the MeOH:H2O Phase (part-IV) | Bacterial cells | Synechococcus | Colorado State University | spectral abundance per cell | |
ST001253 | AN002082 | Phenotyping Mouse blood metabolites in day and night in type 2 diabetes | Blood | Mouse | Diabetes | Indiana University School of Medicine | VolNormImp Area counts |