List of Studies ( Metabolite:Ser-Ser)
Study_id | Analysis_id | Study_title | Source | Species | Disease | Institute | Units(range) |
---|---|---|---|---|---|---|---|
ST002471 | AN004033 | Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling | Feces | Human | Ulcerative colitis | Broad Institute of MIT and Harvard | Abundance |
ST002247 | AN003670 | Microbiota and Health Study (Dhaka, Bangladesh) | Feces | Human | Broad Institute of MIT and Harvard | Abundances | |
ST002759 | AN004482 | Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) | Kidney cortex | Rat | Medical College of Wisconsin | Area | |
ST002761 | AN004489 | Metabolic responses of normal rat kidneys to a high salt intake (Urine) | Urine | Rat | Medical College of Wisconsin | Area | |
ST002051 | AN003338 | The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. | Cultured cells | Toxoplasma gondii | Parasitic infection | Robert Koch-Institute | counts |
ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Human | CZ Biohub | counts, height | |
ST002747 | AN004454 | Evolutionary genomics identifies host-directed therapeutics to treat intracellular bacterial infections | Cultured cells | Rickettsia parkeri | CZ Biohub | counts, height | |
ST002016 | AN003285 | Metabolomics of COVID patients | Blood | Human | COVID-19 | University of Virginia | intensity |
ST002775 | AN004517 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | Normalized Concentrations |
ST002775 | AN004518 | Zebrafish Retina Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | Normalized Concentrations |
ST002444 | AN003981 | Zebrafish Optic Nerve Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | normalized peak areas |
ST002444 | AN003982 | Zebrafish Optic Nerve Regeneration Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | normalized peak areas |
ST001841 | AN002984 | Metabolomics of lung microdissections reveals region- and sex-specific metabolic effects of acute naphthalene exposure in mice (part II) | Liver | Mouse | Oxidative stress | University of California, Davis | normalized peak height |
ST000230 | AN000344 | Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma | Liver | Human | Cancer | Osaka City University | Peak area |
ST000231 | AN000346 | Comprehensive analysis of transcriptome and metabolome in Intrahepatic Cholangiocarcinoma and Hepatocellular Carcinoma (part II) | Liver | Human | Cancer | Osaka City University | Peak area |
ST002505 | AN004127 | A Mammalian Conserved Circular RNA CircLARP2 Regulates Hepatocellular Carcinoma Metastasis and Lipid Metabolism (Part 1) | Cultured cells | Human | Cancer | University of Science and Technology of China | Peak area |
ST003278 | AN005369 | Metabolomic analysis of Axon Regeneration in Xenopus laevis Retina | Eye tissue | Frog | Eye disease | University of Miami | Peak area |
ST002776 | AN004519 | Zebrafish Optic Nerve Regeneration, Tectum Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | Peak Area |
ST002776 | AN004520 | Zebrafish Optic Nerve Regeneration, Tectum Metabolomics - 3 Days Post Crush | Eye tissue | Zebrafish | Eye disease | University of Miami | Peak Area |
ST002787 | AN004534 | Metabolomic analysis of gut metabolites in colorectal cancer patients: correlation with disease development and outcome | Feces | Human | Cancer | Wuhan University of Science and Technology | Peak Area |
ST002926 | AN004799 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Blood | Plasmodium falciparum | Malaria | Monash University | peak height |
ST003521 | AN005783 | Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii | Bacterial cells | Acinetobacter baumannii | Bacterial infection | Monash University | peak height |
ST000414 | AN000656 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST000546 | AN000832 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Cells | Plasmodium falciparum | Malaria | Monash Institute of Pharmaceutical Sciences, Monash University | Peak height |
ST001033 | AN001694 | Determination of mode of action of anti-malalrial drugs using untargeted metabolomics | Cultured cells | Plasmodium falciparum | Malaria | Monash University | Peak height |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | Peak height | |
ST002832 | AN004625 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides fragilis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides thetaiotaomicron | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Bacteroides uniformis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Blautia producta | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium clostridioforme | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hathewayi | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium hylemonae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium scindens | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Clostridium symbiosum | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecalis | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus faecium | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Enterococcus hirae | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Escherichia fergusonii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Flavonifractor plautii | Stanford University | Peak height | |
ST002832 | AN004626 | Resource competition predicts assembly of in vitro gut bacterial communities- HILIC | Bacterial cells | Parabacteroides distasonis | Stanford University | Peak height | |
ST002407 | AN003924 | Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract | Intestine | Human | UC Davis | Peak Height | |
ST001794 | AN002911 | Metabolomics Analysis of Time-Series Gastrointestinal Lumen Samples | Intestine | Human | University of California, Davis | Peak Height Intensity | |
ST001549 | AN002581 | β-Adrenergic regulation of metabolism in macrophages (part-III) | Macrophages | Human | Monash University | Peak intensity | |
ST001745 | AN002838 | Metabolomic profiling of the rat hippocampus across developmental ages and after learning | Brain | Rat | New York University | pmoles/l | |
ST000047 | AN000080 | Identification of altered metabolic pathways in Alzheimer's disease, mild cognitive impairment and cognitively normals using Metabolomics (CSF) | Cerebrospinal fluid | Human | Alzheimers disease | Mayo Clinic | Raw MS Intensities |
ST002438 | AN003974 | Ozone alters glycosphingolipid metabolism and exacerbates characteristics of asthma in mice | Lung | Mouse | Asthma | University of California, Davis | Relative abundance |
ST002438 | AN003975 | Ozone alters glycosphingolipid metabolism and exacerbates characteristics of asthma in mice | Lung | Mouse | Asthma | University of California, Davis | Relative abundance |
ST002263 | AN003697 | Intermittent fasting induces rapid hepatocyte proliferation to maintain the hepatostat | Liver | Mouse | Stanford University | relative counts | |
ST002106 | AN003445 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Blood | Plasmodium falciparum | Malaria | Monash University | relative intensity |
ST002512 | AN004136 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | relative ion counts | |
ST002512 | AN004137 | Gnotobiotic mice: Metabolites in intestinal contents of germ-free mice colonized with strains of gut bacterium Eggerthella lenta | Intestine | Mouse | University of California, San Francisco | relative ion counts | |
ST001304 | AN002173 | Multi-omics analysis delineates the distinct functions of sub-cellular acetyl-CoA pools in Toxoplasma gondii | Fibroblast cells | Toxoplasma gondii | Parasitic infection | Monash University | Signal Intensity |
ST002551 | AN004201 | Metabolomics dataset of CNTF induced axon regeneration in mice post optic nerve crush | Eye tissue | Mouse | Eye disease | University of Miami | µg/ml |