Compare metabolites in 2 of these studies:
Study A:   Study B:  

List of Studies ( Metabolite:Val-Pro)

Study_idAnalysis_idStudy_titleSourceSpeciesDiseaseInstituteUnits(range)
ST002471 AN004033 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Human stool profiling Feces Human Ulcerative colitis Broad Institute of MIT and Harvard Abundance
ST002472 AN004037 Linking bacterial metabolites to disease-associated microbes to uncover mechanisms of host-microbial interactions in intestinal inflammation. Veillonella parvula cell and media profiling Bacterial cells Veillonella parvula Ulcerative colitis Broad Institute of MIT and Harvard Abundance
ST002247 AN003670 Microbiota and Health Study (Dhaka, Bangladesh) Feces Human Broad Institute of MIT and Harvard Abundances
ST002759 AN004481 Metabolic responses of normal rat kidneys to a high salt intake (Kidney cortex) Kidney cortex Rat Medical College of Wisconsin Area
ST002760 AN004483 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002760 AN004485 Metabolic responses of normal rat kidneys to a high salt intake (Kidney outer medulla) Kidney outer medulla Rat Medical College of Wisconsin Area
ST002761 AN004487 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST002761 AN004489 Metabolic responses of normal rat kidneys to a high salt intake (Urine) Urine Rat Medical College of Wisconsin Area
ST003362 AN005504 Metabolomics analysis of Glioblastoma (GBM) cell line U251 labeled by 13C-glutamine after treatment with pimozide Cultured cells Human Cancer The Ohio State University Counts
ST003362 AN005506 Metabolomics analysis of Glioblastoma (GBM) cell line U251 labeled by 13C-glutamine after treatment with pimozide Cultured cells Human Cancer The Ohio State University Counts
ST001324 AN002202 Metabolomics Adaptation of Juvenile Pacific Abalone Haliotis discus hannai to Heat Stress Pacific Abalone Institute of Oceanology, Chinese Academy of Sciences mV*min
ST003172 AN005206 Untargeted Metabolomic Profile Of Chili Pepper (Capsicum Chinensed) Developmental Cycle Capsicum Chinense Plant University of Alberta peak area
ST002977 AN004887 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan Peak area
ST002977 AN004889 Offline Two-dimensional Liquid Chromatography-Mass Spectrometry for Deep Annotation of the Fecal Metabolome following Fecal Microbiota Transplant Feces Human University of Michigan Peak area
ST003333 AN005460 Urine Metabolite Profiling in Indian Male Population at High Altitude using Liquid Chromatography – Mass Spectrometry: A Longitudinal Pilot Study Urine Human Environmental exposure; Hypoxia Defence Institute of Physiology and Allied Sceinces Peak area
ST003036 AN004977 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences peak height
ST003036 AN004978 Identifying and mathematically modeling the time-course of extracellular metabolic markers associated with resistance to ceftolozane/tazobactam in Pseudomonas aeruginosa - Part 2 Bacterial cells Pseudomonas aeruginosa Bacterial infection Monash Institute of Pharmaceutical Sciences peak height
ST003144 AN005159 On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity Blood Plasmodium falciparum Malaria Monash University peak height
ST003521 AN005782 Metabolic Profiling Unveils Enhanced Antibacterial Synergy of Polymyxin B and Teixobactin against Multi-Drug Resistant Acinetobacter baumannii Bacterial cells Acinetobacter baumannii Bacterial infection Monash University peak height
ST000546 AN000833 Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium Cells Plasmodium falciparum Malaria Monash Institute of Pharmaceutical Sciences, Monash University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides fragilis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides thetaiotaomicron Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Bacteroides uniformis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Blautia producta Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium clostridioforme Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hathewayi Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium hylemonae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium scindens Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Clostridium symbiosum Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecalis Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus faecium Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Enterococcus hirae Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Escherichia fergusonii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Flavonifractor plautii Stanford University Peak height
ST002832 AN004625 Resource competition predicts assembly of in vitro gut bacterial communities- HILIC Bacterial cells Parabacteroides distasonis Stanford University Peak height
ST003160 AN005184 New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003179 AN005221 Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 Plasmodium cells Plasmodium falciparum Malaria Monash University Peak height
ST003356 AN005497 Noninvasive multiomic measurement of cell type repertoires in human urine Urine Human Urinary tract infection CZ Biohub Peak height
ST002407 AN003924 Spatial, temporal, and inter-subject variation of the metabolome along the human upper intestinal tract Intestine Human UC Davis Peak Height
ST002281 AN003725 Metabolite patterns between isogenic normal hiPSCs and Trisomy hiPSC iPSC cells Human Down syndrome Guangdong provincial people's hospital pmoles/l
ST001955 AN003180 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
ST001955 AN003181 Metabonomics analysis reveals the physiological mechanism of promoting maize shoots growth under negative pressure to stabilize soil water content Leaves Maize Heilongjiang Bayi Agricultural University µg/100ml
  logo