Metadata details for analysis AN002777 | |
---|---|
Study ID | ST001705 |
Analysis ID | AN002777 |
Study Title | Machine learning-enabled renal cell carcinoma status prediction using multi-platform urine-based metabolomics (part-I) |
Institute | University of Georgia |
Species | Homo sapiens |
Ion_mode | POSITIVE |
MS type | ESI |
MS Instrument Name | Thermo Q Exactive HF hybrid Orbitrap |
MS Instrument Type | Orbitrap |
Chromatography Instrument Name | Q Exactive HF |
Chromatography Type | HILIC |
Chromatography Column | Waters ACQUITY UPLC BEH HILIC (75 x 2.1mm,1.7um) |
Solvent A | |
Solvent B | |
Gradient | |
Flow rate | |
Column Temperature | |
Retention time units | Minutes |