Summary of Study ST001798

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001136. The data can be accessed directly via it's Project DOI: 10.21228/M8VQ4D This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001798
Study TitleSRM1957 validation using GC-XLE (2)
Study TypeUntargeted MS anlaysis
Study SummaryWe evaluated quantification using XLE by testing 68 different chemicals (PCB, PBDEs, chlorinated pesticides) in SRM-1958 using external calibration curves (0.05 to 2 ng/mL) and comparing measured values to the reference concentrations reported for SRM. We identified all 40 PCBs that are reported with a reference mass fraction (including certified values and non-certified estimates) in the range of 46.6 to 490 ng/kg in SRM-1958 certificate of analysis (issue date: 11 October 2018). Quantification without adjustment for recovery was reproducible with 29 PCB qualifications at >70% and 35 PCBs at >65% of the reference levels. Eleven out of 13 PBDE/PBBs and all 17 organochlorine pesticides were identifiable and reproducibly quantified in this experiment. Therefore, XLE provides sufficient recovery to support accurate absolute quantification of a broad range of environmental chemicals. Overall, XLE supported measurement of 68 out of the 70 chemicals that are in the ng/kg range in SRM-1958.
Institute
Emory University
DepartmentMedicine/Pulmonary
LaboratoryDean Jones
Last NameHu
First NameXin
AddressEmory University Whitehead building (Rm 225), 615 Michael Street
Emailxin.hu2@emory.edu
Phone4047275091
Submit Date2021-05-05
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailGC-MS
Release Date2021-05-20
Release Version1
Xin Hu Xin Hu
https://dx.doi.org/10.21228/M8VQ4D
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002920
Analysis type MS
Chromatography type GC
Chromatography system Thermo Trace 1310
Column Agilent DB5-MS (15m x 0.25mm,0.25um)
MS Type EI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode POSITIVE
Units raw intensity

Chromatography:

Chromatography ID:CH002162
Chromatography Summary:Samples were analyzed with three injections using GC-HRMS with a Thermo Scientific Q Exactive GC hybrid quadrupole Orbitrap mass spectrometer with 2 µL per injection. A capillary DB-5MS column (15 m × 0.25 mm × 0.25 µm film thickness) was used with the following temperature program: hold 75 °C for 1 min, 25 °C/min to 180 °C, 6 °C/min to 250 °C, 20 °C/min to 350 °C and hold for 5 min. The flow rate of the helium carrier gas was 1 mL/min. Ion source and transfer line temperatures were 250°C and 280°C, respectively. Data were collected from 3 to 24.37 min with positive electron ionization (EI) mode (+70 eV), scanning from m/z 85.0000 to 850.0000 with a resolution of 60,000.
Instrument Name:Thermo Trace 1310
Column Name:Agilent DB5-MS (15m x 0.25mm,0.25um)
Chromatography Type:GC
  logo