Summary of Study ST001741

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001114. The data can be accessed directly via it's Project DOI: 10.21228/M8Q39V This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001741
Study TitlePhospholipid profiling of Scd1-defective mice
Study TypeTargeted lipidomics
Study SummaryMice homozygous for the Scd1ab-2J allele have a defect Scd1 gene with an in-frame stop codon in exon 2. To identify SCD1-derived phospholipid species, we analysed PI and PC species in organs and tissues that highly express SCD1 and are considered as targets for intervention with SCD1 inhibitors, i.e., liver, skin, hind leg skeletal muscle, and white abdominal fat.
Institute
University of Innsbruck
DepartmentMichael Popp Institute
Last NameKoeberle
First NameAndreas
AddressMitterweg 24, Innsbruck, Tyrol, 6020, Austria
Emailandreas.koeberle@uibk.ac.at
Phone+43 512 507 57903
Submit Date2021-04-01
Raw Data AvailableYes
Raw Data File Type(s)wiff
Analysis Type DetailLC-MS
Release Date2021-04-20
Release Version1
Andreas Koeberle Andreas Koeberle
https://dx.doi.org/10.21228/M8Q39V
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001114
Project DOI:doi: 10.21228/M8Q39V
Project Title:Regulation of stress signalling by SCD1-derived phosphatidylinositols
Project Type:Targeted lipidomics
Project Summary:Cytotoxic stress activates stress-activated kinases, initiates adaptive mechanisms, including the unfolded protein response (UPR) and autophagy, and induces programmed cell death. Fatty acid unsaturation, controlled by stearoyl-CoA desaturase (SCD)1, prevents cytotoxic stress but the mechanisms are diffuse. We found that 1,2-dioleoyl-sn-glycero-3-phospho-(1’-myo-inositol) [PI(18:1/18:1)] is a SCD1-derived signaling lipid, which inhibits p38 mitogen-activated protein kinase (MAPK) activation, counteracts UPR, autophagy and apoptosis induction, and maintains cell morphology and proliferation. SCD1 expression and the cellular PI(18:1/18:1) proportion decrease during the onset of cell death, thereby activating stress signaling. This counter-regulation applies to mechanistically diverse death-inducing conditions and occurs in tissues of Scd1-defective mice.
Institute:University of Innsbruck
Department:Michael Popp Institute
Last Name:Koeberle
First Name:Andreas
Address:Mitterweg 24, Innsbruck, Tyrol, 6020, Austria
Email:andreas.koeberle@uibk.ac.at
Phone:+43 512 507 57903
Funding Source:German Research Council (GRK 1715 and KO 4589/4-1), Phospholipid Research Center Heidelberg (AKO-2019-070/2-1 and AKO-2015-037/1-1), University of Jena (DRM/2013-05 and 2.7-05), Free State of Thuringia (41-5507-2016) and Leibniz ScienceCampus InfectoOptics (SAS-2015-HKI-LWC).
Publications:PI(18:1/18:1) is a SCD1-derived lipokine that limits stress signaling. Thürmer M, Gollowitzer A, Pein H, Neukirch K, Gelmez E, Waltl L, Wielsch N, Winkler R, Löser K, Grander J, Hotze M, Harder S, Döding A, Meßner M, Troisi F, Ardelt M, Schlüter H, Pachmayr J, Gutiérrez-Gutiérrez Ó, Rudolph KL, Thedieck K, Schulze-Späte U, González-Estévez C, Kosan C, Svatoš A, Kwiatkowski M, Koeberle A. Nat Commun. 2022 May 27;13(1):2982. doi: 10.1038/s41467-022-30374-9.
  logo