Summary of Study ST001964

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001095. The data can be accessed directly via it's Project DOI: 10.21228/M85976 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001964
Study TitleQuantitative genome-scale analysis of human liver reveals dysregulation of glycosphingolipid pathways in progressive nonalcoholic fatty liver disease
Study SummaryNonalcoholic fatty liver disease (NAFLD) is a well-defined chronic liver diseases closely related with metabolic disorders. The prevalence of NAFLD is rapidly increasing worldwide, while the pathology and the underlying mechanisms driving NAFLD are not fully understood. In NAFLD, a series of metabolic changes takes place in the liver. However, the alteration of the metabolic pathways in the human liver along the progression of NAFLD, i.e., the transition from nonalcoholic steatosis (NAFL) to steatohepatitis (NASH) through cirrhosis remains to be discovered. Here, we sought to examine the metabolic pathways of the human liver across the full histological spectrum of NAFLD. We analyzed the whole liver tissue transcriptomic (RNA-Seq) and serum metabolomics data obtained from a large, prospectively enrolled cohort of histologically characterized patients derived from the European NAFLD Registry (n=206), and developed genome-scale metabolic models (GEMs) of human hepatocytes at different stages of NAFLD. The integrative approach employed in this study has enabled us to understand the regulation of the metabolic pathways of human liver in NAFL, and with progressive NASH-associated fibrosis (F0–F4). Our study identified several metabolic signatures in the liver and blood of these patients, specifically highlighting the alteration of vitamins (A, E) and glycosphingolipids (GSLs), and their link with complex glycosaminoglycans (GAGs) in advanced fibrosis. The study provides insights into the underlying pathways of the progressive fibrosing steatohepatitis. Furthermore, by applying genome-scale metabolic modeling (GSMM), we were able to identify the metabolic differences among carriers of widely validated genetic variants associated with NAFLD / NASH disease severity in three genes (PNPLA3, TM6SF2 and HSD17B13).
Institute
University of Turku
Last NameSen
First NamePartho
AddressSystems Medicine group, Turku Bioscience, University of Turku (UTU), Tykistökatu 6B, P.O. Box 123 FIN-20521 Turku, Finland
Emailpartho.sen@utu.fi
PhonePhone: +358 469608145
Submit Date2021-02-18
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailGC-MS
Release Date2022-01-03
Release Version1
Partho Sen Partho Sen
https://dx.doi.org/10.21228/M85976
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001095
Project DOI:doi: 10.21228/M85976
Project Title:Metabolomic signatures of NAFLD
Project Summary:Background and Aims: Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that is strongly associated with type 2 diabetes. Accurate, non-invasive diagnostic tests to delineate the different stages: degree of steatosis, grade of nonalcoholic steatohepatitis (NASH) and stage fibrosis represent an unmet medical need. In our previous studies, we successfully identified specific serum molecular lipid signatures which associate with the amount of liver fat as well as with NASH. Here we report underlying associations between clinical data, lipidomic profiles, metabolic profiles and clinical outcomes, including downstream identification of potential biomarkers for various stages of the disease. Method: We leverage several statistical and machine-learning approaches to analyse clinical, lipidomic and metabolomic profiles of individuals from the European Horizon 2020 project: Elucidating Pathways of Steatohepatitis (EPoS). We interrogate data on patients representing the full spectrum of NAFLD/NASH derived from the EPoS European NAFLD Registry (n = 627). We condense the EPoS lipidomic data into lipid clusters and subsequently apply non-rejection-rate-pruned partial correlation network techniques to facilitate network analysis between the datasets of lipidomic, metabolomic and clinical data. For biomarker identification, a random forest ensemble classification approach was used to both search for valid disease biomarkers and to compare classification performance of lipids, metabolites and clinical factors in combination. Results: We found that steatosis and fibrosis grades were strongly associated with (1) an increase of triglycerides with low carbon number and double bond count as well as (2) a decrease of specific phospholipids, including lysophosphatidylcholines. In addition to the network topology as a result itself, we also present lipid clusters (LCs) of interest to the derived network of proposed interactions in our NAFLD data from the EPoS cohort, along with preliminary metabolite and lipid biomarkers to classify NAFLD fibrosis. Conclusions: Our findings suggest that dysregulation of lipid metabolism in progressive stages of NAFLD is reflected in circulation and may thus hold diagnostic value as well as offer new insights about NAFLD pathogenesis. Using this cohort as a proof-of-concept, we demonstrate current progress in tuning the accuracy random forest approaches with a view to predicting various subtypes of NAFLD patient using a minimal set of lipidomic and metabolic markers. For the first time, a detailed network-based picture emerges between lipids, polar metabolites and clinical variables. Lipidomic / metabolomic markers may provide an alternative method of NAFLD patient classification and risk stratification to guide therapy.
Institute:Örebro University
Last Name:McGlinchey
First Name:Aidan
Address:School of Medical Sciences, Örebro, Örebro, 70281, Sweden
Email:aidan.mcglinchey@oru.se
Phone:+46736485638
  logo