Summary of Study ST002360

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001515. The data can be accessed directly via it's Project DOI: 10.21228/M8VQ5S This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST002360
Study TitleQuantitative lipidomics of TFG-deficient B cells
Study SummaryThe autophagy-flux-promoting protein TFG (Trk-fused gene) is up-regulated during B cell differentiation into plasma cells and supports survival of CH12 B cells. We hypothesized that quantitative proteomics analysis of CH12tfgKO B cells with intact or blocked autophagy-lysosome flux (via NH4Cl) will identify mechanisms of TFG-dependent autophagy, plasma cell biology and B cell survival. Analysis of CH12WT B cells in the presence of NH4Cl will identify proteins whose presence is continuously regulated by lysosomes independent of TFG. We determined hundreds of proteins to be controlled by TFG and/or NH4Cl. Notably, NH4Cl treatment alone increased the abundance of a cluster of cytosolic and mitochondrial translational proteins while it also reduced a number of proteins. Within the B cell relevant protein pool, BCL10 was reduced, while JCHAIN was increased in CH12tfgKO B cells. Furthermore, TFG regulated the abundance of transcription factors, such as JUNB, metabolic enzymes, such as the short-chain fatty acid activating enzyme ACOT9 or the glycolytic enzyme ALDOC. Gene ontology enrichment analysis revealed that TFG-regulated proteins localized to mitochondria and membrane-bounded organelles. Due to these findings we performed shotgun lipidomics of glycerophospholipids, uncovering that a particular phosphatidylethanolamine (PE) species, PE 32:0, which lipidates LC3 most efficiently, was less abundant while phosphatidylglycerol (PG) was more abundant in CH12tfgKO B cells. In line with the role of PG as precursor for Cardiolipin (CL), the CL content was higher in CH12tfgKO B cells and addition of PG liposomes to B cells increased the amount of CL. We propose a role for TFG in B cell activation and plasma cell biology via regulation of proteins involved in germinal center and plasma cell development, such as BCL10 or JCHAIN, as well as in lipid homeostasis, mitochondria and metabolism.
Institute
University of Cologne
DepartmentFaculty of Medicine and University Hospital of Cologne, Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD)
LaboratoryCECAD Lipidomics/Metabolomics Facility
Last NameBrodesser
First NameSusanne
AddressJoseph-Stelzmann-Str. 26, 50931 Cologne, Germany
Emailsusanne.brodesser@uk-koeln.de
Phone+49 221 478 84015
Submit Date2022-11-21
Num Groups2
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailMS(Dir. Inf.)
Release Date2022-12-15
Release Version1
Susanne Brodesser Susanne Brodesser
https://dx.doi.org/10.21228/M8VQ5S
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001515
Project DOI:doi: 10.21228/M8VQ5S
Project Title:Quantitative proteomics and lipidomics of TFG-deficient B cells provide insights into mechanisms of autophagic flux and plasma cell biology
Project Summary:The autophagy-flux-promoting protein TFG (Trk-fused gene) is up-regulated during B cell differentiation into plasma cells and supports survival of CH12 B cells. We hypothesized that quantitative proteomics analysis of CH12tfgKO B cells with intact or blocked autophagy-lysosome flux (via NH4Cl) will identify mechanisms of TFG-dependent autophagy, plasma cell biology and B cell survival. Analysis of CH12WT B cells in the presence of NH4Cl will identify proteins whose presence is continuously regulated by lysosomes independent of TFG. We determined hundreds of proteins to be controlled by TFG and/or NH4Cl. Notably, NH4Cl treatment alone increased the abundance of a cluster of cytosolic and mitochondrial translational proteins while it also reduced a number of proteins. Within the B cell relevant protein pool, BCL10 was reduced, while JCHAIN was increased in CH12tfgKO B cells. Furthermore, TFG regulated the abundance of transcription factors, such as JUNB, metabolic enzymes, such as the short-chain fatty acid activating enzyme ACOT9 or the glycolytic enzyme ALDOC. Gene ontology enrichment analysis revealed that TFG-regulated proteins localized to mitochondria and membrane-bounded organelles. Due to these findings we performed shotgun lipidomics of glycerophospholipids, uncovering that a particular phosphatidylethanolamine (PE) species, PE 32:0, which lipidates LC3 most efficiently, was less abundant while phosphatidylglycerol (PG) was more abundant in CH12tfgKO B cells. In line with the role of PG as precursor for Cardiolipin (CL), the CL content was higher in CH12tfgKO B cells and addition of PG liposomes to B cells increased the amount of CL. We propose a role for TFG in B cell activation and plasma cell biology via regulation of proteins involved in germinal center and plasma cell development, such as BCL10 or JCHAIN, as well as in lipid homeostasis, mitochondria and metabolism.
Institute:Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg
Department:Division of Molecular Immunology, Department of Internal Medicine 3, Nikolaus-Fiebiger-Zentrum
Last Name:Mielenz
First Name:Dirk
Address:Glückstr. 6, 91054 Erlangen, Germany
Email:dirk.mielenz@fau.de
Phone:+49 9131 85 39105
Contributors:Tobit D. Steinmetz, Lena Reimann, Sebastian R. Schulz, Sophia Urbanczyk, Jana Thomas, Ann-Kathrin Himmelreich, Florian Golombek, Kathrin Castiglione, Susanne Brodesser, Bettina Warscheid, Dirk Mielenz
  logo