Summary of Study ST000396

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR000309. The data can be accessed directly via it's Project DOI: 10.21228/M86G6V This work is supported by NIH grant, U2C- DK119886.


Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST000396
Study TitleLung Cancer Plasma Discovery
Study SummaryRecently, major efforts have been directed toward early detection of lung cancer through low-dose computed tomography (LDCT) scanning. Data from the National Lung Screening Trial (NLST) suggest that yearly screening with thoracic LDCT scanning for high-risk current and former smokers reduces lung cancer mortality by 20% and total mortality by 7%. However, issues including indeterminate nodules detected by LDCT and radiation exposure impact the practicality of LDCT-based screening on a national and global basis. A blood-based biomarker or multiplexed marker panel that could complement LDCT would represent a major advance in implementing lung cancer screening. Efforts to develop blood-based biomarkers for lung cancer early detection using a variety of methodologies are currently ongoing. Proteomic studies have led to the identification of several candidate markers including pro-surfactantproteinB(pro-SFTPB), a target of a lineage-survival oncogene in lung cancer, NKX2-1.Validation studies using blood samples collected at the time of LDCT screening for lung cancer substantiated the performance of pro-SFTPB. Multivariable logistic regression models were used to evaluate the predictive ability of pro-SFTPB. The area under the curve (AUC) values of the full model with and without pro-SFTPB were 0.741 (95% CI, 0.696 to 0.783) and 0.669 (95%CI, 0.620 to 0.717), respectively (difference in AUC, P_.001). Single markers are unlikely to have sufficient performance for implementation in a screening setting, hence the need to explore several discovery platforms to identify markers that provide complementary performance. Metabolomics represents a global unbiased approach to the profiling of small molecules and has been established as a platform for biomarker discovery for a variety of human biofluids and tissues. Here we used an untargeted liquid chromatography/mass spectrometry (MS) metabolomics approach to identify metabolites that distinguish human sera collected before the diagnosis of lung cancer from matched control sera in a prospective cohort of highrisk patients from the Beta-Carotene and Retinol Efficacy Trial (CARET).
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Phone(530) 754-8258
Submit Date2016-05-10
Raw Data AvailableYes
Raw Data File Type(s)cdf
Analysis Type DetailGC-MS
Release Date2016-06-18
Release Version2
Release CommentsUpdated study design factors
Oliver Fiehn Oliver Fiehn application/zip

Select appropriate tab below to view additional metadata details:

Sample Preparation:

Sampleprep ID:SP000424
Sampleprep Summary:1. Switch on bath to pre-cool at –20°C (±2°C validity temperature range) 2. Gently rotate or aspirate the blood samples for about 10s to obtain a homogenised sample. 3. Aliquot 30μl of plasma sample to a 1.0 mL extraction solution. The extraction solution has to be prechilled using the ThermoElectron Neslab RTE 740 cooling bath set to -20°C. 4. Vortex the sample for about 10s and shake for 5 min at 4°C using the Orbital Mixing Chilling/Heating Plate. If you are using more than one sample, keep the rest of the sample on ice (chilled at <0°C with sodium chloride). 5. Centrifuge samples for 2min at 14000 rcf using the centrifuge Eppendorf 5415 D. 6. Aliquot two 450μL portions of the supernatant. One for analysis and one for a backup sample. Store the backup aliquot in -20°C freezer. 7. Evaporate one 450μL aliquots of the sample in the Labconco Centrivap cold trap concentrator to complete dryness. 8. The dried aliquot is then re-suspended with 450 μL 50% acetonitrile (degassed as given above). 9. Centrifuged for 2 min at 14000 rcf using the centrifuge Eppendorf 5415. 10. Remove supernatant to a new Eppendorf tube. 11. Evaporate the supernatant to dryness in the Labconco Centrivap cold trap concentrator. 12. Submit to derivatization.
Sampleprep Protocol Filename:SOP_blood-GCTOF-11082012.pdf