Summary of Study ST000397

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench,, where it has been assigned Project ID PR000310. The data can be accessed directly via it's Project DOI: 10.21228/M8B602 This work is supported by NIH grant, U2C- DK119886.


Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST000397
Study TitleLong-term neural and physiological phenotyping of a single human
Study TypeLongitudinal
Study SummaryThe dynamics of human brain function are increasingly well understood at the short timescale of seconds/minutes (for example, through studies of learning) and the long timescale of years/decades (for example, through studies of development andageing), but almost nothing is known about how the human brainfunction varies across the range of days to months. This is a critical gap, because major psychiatric disorders show large fluctuations in brain function over this timescale. However, the kind of dense longitudinal phenotyping that is necessary to understand this question is extremely challenging with healthy human volunteers,who are unlikely to be sufficiently motivated to sustain frequent participation in a study over a long period. For this reason, the participation of motivated experimenters can be uniquely useful for demanding longitudinal studies. We investigated the long-range dynamics of brain function andtheir relation to a broad set of psychological and biological variables in a single healthy human (author R.A.P.) over the course of 532 days (along with several follow-up visits), representing one of the most intensive biological characterizations of a single individual ever performed (referred to hereafter as the MyConnectomestudy). The study was designed to measure the broadest possible range of human phenotypes (the phenome’3,4) to allow the widespread assessment of relations between psychological, neural and metabolic function. The results of the present study demonstrate that healthy brain function shows rich dynamics over the course of 18 months, and that these dynamics are paralleled by ongoing fluctuations in psychological and physiological function as observed in behaviour,gene expression and metabolomic measurements. These findings provide a proof of concept for the dynamic longitudinal phenotyping of individuals, which we propose will be crucial togain a better understanding of the substantial fluctuations in psychological and neural function in individuals with major psychiatric disorders.
University of California, Davis
DepartmentGenome and Biomedical Sciences Facility
LaboratoryWCMC Metabolomics Core
Last NameFiehn
First NameOliver
Address1315 Genome and Biomedical Sciences Facility, 451 Health Sciences Drive, Davis, CA 95616
Phone(530) 754-8258
Submit Date2016-05-11
Total Subjects1
Publicationsdoi: 10.1038/ncomms9885
Raw Data AvailableYes
Raw Data File Type(s)peg
Analysis Type DetailGC-MS
Release Date2016-06-18
Release Version2
Release CommentsUpdated study design factors
Oliver Fiehn Oliver Fiehn application/zip

Select appropriate tab below to view additional metadata details:

Sample Preparation:

Sampleprep ID:SP000425
Sampleprep Summary:1. Switch on bath to pre-cool at –20°C (±2°C validity temperature range) 2. Gently rotate or aspirate the blood samples for about 10s to obtain a homogenised sample. 3. Aliquot 30μl of plasma sample to a 1.0 mL extraction solution. The extraction solution has to be prechilled using the ThermoElectron Neslab RTE 740 cooling bath set to -20°C. 4. Vortex the sample for about 10s and shake for 5 min at 4°C using the Orbital Mixing Chilling/Heating Plate. If you are using more than one sample, keep the rest of the sample on ice (chilled at <0°C with sodium chloride). 5. Centrifuge samples for 2min at 14000 rcf using the centrifuge Eppendorf 5415 D. 6. Aliquot two 450μL portions of the supernatant. One for analysis and one for a backup sample. Store the backup aliquot in -20°C freezer. 7. Evaporate one 450μL aliquots of the sample in the Labconco Centrivap cold trap concentrator to complete dryness. 8. The dried aliquot is then re-suspended with 450 μL 50% acetonitrile (degassed as given above). 9. Centrifuged for 2 min at 14000 rcf using the centrifuge Eppendorf 5415. 10. Remove supernatant to a new Eppendorf tube. 11. Evaporate the supernatant to dryness in the Labconco Centrivap cold trap concentrator. 12. Submit to derivatization.
Sampleprep Protocol Filename:SOP_blood-GCTOF-11082012.pdf