Summary of Study ST001802

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001136. The data can be accessed directly via it's Project DOI: 10.21228/M8VQ4D This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001802
Study TitleHuman lung exposomics analysis
Study TypeUntargeted MS anlaysis
Study SummaryWe tested the general utility of XLE in a variety of human biological samples by analyzing human lung and thyroid tissues and stool samples. We quantified 32 environmental chemicals in 11 human lungs, with HCB, PCB-28 and PCB-18 being most frequently detected (10 out of 11). The commonly detected chemicals in human plasma were detected less frequently in the lung. For the 11 lungs, p,p’-DDE was detected in eight, PCB-153 in five, PBDE-47 and PCB-138 in four and PCB-180 in three. Although the plasma samples were from non-diseased individuals and the lungs were both diseased and non-diseased individuals, HCA results suggest that environmental chemical profiles in human lung may be very different from plasma.
Institute
Emory University
DepartmentMedicine/Pulmonary
LaboratoryDean Jones
Last NameHu
First NameXin
AddressEmory University Whitehead building (Rm 225), 615 Michael Street
Emailxin.hu2@emory.edu
Phone4047275091
Submit Date2021-05-06
Raw Data AvailableYes
Raw Data File Type(s)mzXML
Analysis Type DetailGC-MS
Release Date2021-05-28
Release Version1
Xin Hu Xin Hu
https://dx.doi.org/10.21228/M8VQ4D
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Project:

Project ID:PR001136
Project DOI:doi: 10.21228/M8VQ4D
Project Title:A scalable workflow for the human exposome
Project Type:Untargeted GC-MS quantitative analysis
Project Summary:Complementing the genome with an understanding of the human exposome is an important challenge for contemporary science and technology. Tens of thousands of chemicals are used in commerce, yet cost for targeted environmental chemical analysis limits surveillance to a few hundred known hazards. To overcome limitations which prevent scaling to thousands of chemicals, we developed a single-step express liquid extraction (XLE), gas chromatography high-resolution mass spectrometry (GC-HRMS) analysis and computational pipeline to operationalize the human exposome. We show that the workflow supports quantification of environmental chemicals in human plasma (200 µL) and tissue (≤ 100 mg) samples. The method also provides high resolution, sensitivity and selectivity for exposome epidemiology of mass spectral features without a priori knowledge of chemical identity. The simplicity of the method can facilitate harmonization of environmental biomonitoring between laboratories and enable population level human exposome research with limited sample volume.
Institute:Emory University
Department:Medicine, Pulmonary
Laboratory:Dean Jones
Last Name:Hu
First Name:Xin
Address:Emory University Whitehead building (Rm 225), 615 Michael Street, Atlanta, Georgia, 30322, USA
Email:xin.hu2@emory.edu
Phone:4047275091
Funding Source:This study was supported by the NIEHS, U2C ES030163 (DPJ), U2C ES030859 (DIW) and P30 ES019776 (CJM), NIDDK RC2 DK118619 (KNL), NHLBI R01 HL086773 (DPJ), US Department of Defense W81XWH2010103 (DPJ), and the Chris M. Carlos and Catharine Nicole Jockisch Carlos Endowment Fund in Primary Sclerosing Cholangitis (PSC) (KNL).
Contributors:Xin Hu, Douglas I. Walker, Yongliang Liang, M. Ryan Smith, Michael L. Orr, Brian D. Juran, Chunyu Ma, Karan Uppal, Michael Koval, Greg S. Martin, David C. Neujahr, Carmen J. Marsit, Young-Mi Go, Kurt Pennell, Gary W. Miller, Konstantinos N. Lazaridis, Dean P. Jones

Subject:

Subject ID:SU001879
Subject Type:Human
Subject Species:Homo sapiens
Taxonomy ID:9606

Factors:

Subject type: Human; Subject species: Homo sapiens (Factor headings shown in green)

mb_sample_id local_sample_id type
SA167542ExSTD5external std
SA167543T29-2lung
SA167544T28-2lung
SA167545T30-1lung
SA167546T29-1lung
SA167547T33-1lung
SA167548T33-2lung
SA167549T28-1lung
SA167550T31-2lung
SA167551T31-1lung
SA167552T30-2lung
SA167553T26-1lung
SA167554T19-2lung
SA167555T19-1lung
SA167556T18-2lung
SA167557T18-1lung
SA167558T21-1lung
SA167559T21-2lung
SA167560T27-1lung
SA167561T26-2lung
SA167562T25-2lung
SA167563T25-1lung
SA167564T27-2lung
SA167538NIST1958_2-1SRM1958
SA167539NIST1958_2-2SRM1958
SA167540NIST1958_1-2SRM1958
SA167541NIST1958_1-1SRM1958
Showing results 1 to 27 of 27

Collection:

Collection ID:CO001872
Collection Summary:Whole human lungs were from eleven individuals; 4 were end-stage diseased lungs acquired from the Emory Transplant Center (IRB approval No. 00006248), one was from Cystic Fibrosis Biospecimen Registry at Emory University (IRB approval No. 00095116) and 6 non-diseased post-mortem lungs were obtained through the International Institute for the Advancement of Medicine (IIAM, Edison, NJ) or Novabiosis (Morrisville, NC).
Sample Type:Lung

Treatment:

Treatment ID:TR001892
Treatment Summary:Tissue materials were processed similarly with a consistent ratio of 1:5 (sample to hexane-ethyl acetate mixture), i.e., 100 mg lung was homogenized in 300 µL water and extracted with 150 µL formic acid and 400 µL hexane-ethyl acetate mixture, while 40 mg thyroid was homogenized in 250 µL water and extracted with 50 µL formic acid and 200 µL hexane-ethyl acetate mixture. Stool samples (100 mg) were homogenized and extracted directly in 50 µL formic acid and 500 µL hexane-ethyl acetate mixture and then processed as plasma samples. The variation of 1:4 from 1:5 in lung extraction was arbitrary in consideration of the lower density of lung as an organ. The internal standards were spiked at final concentration: 1 ng/mL. The sample mixture was shaken vigorously on ice using multi-tube vortexer (VWR VX-2500) for 1 h and centrifuged at 1000 g, 4 °C for 10 min. The sample mixture was chilled during entire extraction procedure. The organic supernatant was transferred to a new tube with 25 mg MgSO4 (≥99.99% pure, Sigma-Aldrich) for testing of QuEChERS based procedure, and vortexed vigorously to remove water. After 10 min centrifugation at 1000 g, 80 µL of the final supernatant was spiked with instrumental internal standards (final concentration: 1 ng/mL) for analysis.

Sample Preparation:

Sampleprep ID:SP001885
Sampleprep Summary:Same as treatment

Combined analysis:

Analysis ID AN002924
Analysis type MS
Chromatography type GC
Chromatography system Thermo Trace 1310
Column Agilent DB5-MS (15m x 0.25mm,0.25um)
MS Type EI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode POSITIVE
Units raw intensity

Chromatography:

Chromatography ID:CH002166
Chromatography Summary:Samples were analyzed with three injections using GC-HRMS with a Thermo Scientific Q Exactive GC hybrid quadrupole Orbitrap mass spectrometer with 2 µL per injection. A capillary DB-5MS column (15 m × 0.25 mm × 0.25 µm film thickness) was used with the following temperature program: hold 75 °C for 1 min, 25 °C/min to 180 °C, 6 °C/min to 250 °C, 20 °C/min to 350 °C and hold for 5 min. The flow rate of the helium carrier gas was 1 mL/min. Ion source and transfer line temperatures were 250°C and 280°C, respectively. Data were collected from 3 to 24.37 min with positive electron ionization (EI) mode (+70 eV), scanning from m/z 85.0000 to 850.0000 with a resolution of 60,000.
Instrument Name:Thermo Trace 1310
Column Name:Agilent DB5-MS (15m x 0.25mm,0.25um)
Chromatography Type:GC

MS:

  logo