Summary of Study ST000909

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000630. The data can be accessed directly via it's Project DOI: 10.21228/M87H6H This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files
Study IDST000909
Study TitleMetabolomics Linking Air Pollution, Obesity and Type 2 Diabetes
Study TypeUntargeted high-resolution mass spectrometry profiling
Study SummaryThe overall goal of this proposal is to use blood non-targeted high resolution metabolomics (HRM) to investigate the hypothesis that regional air pollution (NO2, PM2.5 and O3) and traffic-related air pollution exposures (traffic-related particulate matter components including EC2.5 and PM2.5 transition metals, and CALINE model-predicted NOx) alter key metabolic pathway(s) and that these alterations are associated with obesity and type 2 diabetes-related traits during the important developmental period of adolesence in the ongoing prospective Chidlren's Health study (CHS). Specific Aim 1 will examine the adverse impact of environmental chemicals in fasting blood samples measured by HRM on obesity (i.e., total body fat and body mass index (BMI)), metabolic dysfunction (e.g., fasting glucose and insulin concentrations and insulin resistance), and obesity-induced inflammation (i.e., leptin) among 104 Southern California adolescents enrolled in the CHS. Specific Aim 2 will examine associations of childhood exposures to PM2.5 and traffic-related air pollutants (i.e., CALINE model-predicted NOx) with biological metabolites identified in fasting blood samples using HRM among 104 adolescents in the CHS. Specific Aim 3 will investigate the metabolic pathways linking air pollution exposures and obesity and type 2 diabetes-related traits using pathway analysis under bayesian hierarchical model among 104 adolescents in the CHS.
Institute
Emory University
DepartmentSchool of Medicine, Division of Pulmonary, Allergy, Critical Care Medicine
LaboratoryClincal Biomarkers Laboratory
Last NameWalker
First NameDouglas
Address615 Michael St. Ste 225, Atlanta, GA, 30322, USA
Emaildouglas.walker@emory.edu
Phone(404) 727 5984
Submit Date2017-12-05
Total Subjects104
Study CommentsBoth CHEAR and Clinical Biomarker Laboratory pooled plasma samples were used for quality control. Study specific sample pools were not created
Raw Data File Type(s)mzXML
Chear StudyYes
Analysis Type DetailLC-MS
Release Date2020-09-12
Release Version1
Douglas Walker Douglas Walker
https://dx.doi.org/10.21228/M87H6H
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN001476 AN001477
Analysis type MS MS
Chromatography type HILIC Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Waters XBridge Amide (50 x 2.1mm, 2.5um) Thermo Higgins C18 (50 x 2.1mm, 3um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE
Units Peak intensity Peak intensity

Chromatography:

Chromatography ID:CH001035
Chromatography Summary:The HILIC column is operated parallel to reverse phase column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6-port switching valves. During operation of HILIC separation method, the MS is operated in positive ion mode and 10 μL of sample is injected onto the HILIC column while the reverse phase column is flushing with wash solution. Flow rate is maintained at 0.35 mL/min until 1.5 min, increased to 0.4 mL/min at 4 min and held for 1 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 2% formic acid (v/v) in LC-MS grade water. Initial mobile phase conditions are 22.5% A, 75% B, 2.5% C hold for 1.5 min, with linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min, resulting in a total analytical run time of 5 min. During the flushing phase (reverse phase analytical separation), the HILIC column is equilibrated with a wash solution of 77.5% A, 20% B, 2.5% C.
Methods ID:2% formic acid in LC-MS grade water
Methods Filename:20160920_posHILIC120kres5min_ESI_c18negwash.meth
Chromatography Comments:Triplicate injections for each chromatography mode
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Waters XBridge Amide (50 x 2.1mm, 2.5um)
Column Temperature:60C
Flow Gradient:A= water, B= acetontrile, C= 2% formic acid in water; 22.5% A, 75% B, 2.5% C hold for 1.5 min, linear gradient to 77.5% A, 20% B, 2.5% C at 4 min, hold for 1 min
Flow Rate:0.35 mL/min for 1.5 min; linear increase to 0.4 mL/min at 4 min, hold for 1 min
Sample Injection:10 uL
Solvent A:LC-MS grade water
Solvent B:LC-MS grade acetonitrile
Analytical Time:5 min
Sample Loop Size:15 uL
Sample Syringe Size:100 uL
Chromatography Type:HILIC
  
Chromatography ID:CH001036
Chromatography Summary:The C18 column is operated parallel to the HILIC column for simultaneous analytical separation and column flushing through the use of a dual head HPLC pump equipped with 10-port and 6-port switching valves. During operation of the C18 method, the MS is operated in negative ion mode and 10 μL of sample is injected onto the C18 column while the HILIC column is flushing with wash solution. Flow rate is maintained at 0.4 mL/min until 1.5 min, increased to 0.5 mL/min at 2 min and held for 3 min. Solvent A is 100% LC-MS grade water, solvent B is 100% LC-MS grade acetonitrile and solvent C is 10mM ammonium acetate in LC-MS grade water. Initial mobile phase conditions are 60% A, 35% B, 5% C hold for 0.5 min, with linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3.5 min, resulting in a total analytical run time of 5 min. During the flushing phase (HILIC analytical separation), the C18 column is equilibrated with a wash solution of 0% A, 95% B, 5% C until 2.5 min, followed by an equilibration solution of 60% A, 35% B, 5% C for 2.5 min.
Methods ID:10mM ammonium acetate in LC-MS grade water
Methods Filename:20160920_negC18120kres5min_ESI_HILICposwash.meth
Chromatography Comments:Triplicate injections for each chromatography mode
Instrument Name:Thermo Dionex Ultimate 3000
Column Name:Thermo Higgins C18 (50 x 2.1mm, 3um)
Column Temperature:60C
Flow Gradient:A= water, B= acetontrile, C= 10mM ammonium acetate in water; 60% A, 35% B, 5% C hold for 0.5 min, linear gradient to 0% A, 95% B, 5% C at 1.5 min, hold for 3 min
Flow Rate:0.4 mL/min for 1.5 min; linear increase to 0.5 mL/min at 2 min held for 3 min
Sample Injection:10 uL
Solvent A:LC-MS grade water
Solvent B:LC-MS grade acetonitrile
Analytical Time:5 min
Sample Loop Size:15 uL
Sample Syringe Size:100 uL
Chromatography Type:Reversed phase
  logo