Summary of Study ST000909

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000630. The data can be accessed directly via it's Project DOI: 10.21228/M87H6H This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Show all samples  |  Perform analysis on untargeted data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files
Study IDST000909
Study TitleMetabolomics Linking Air Pollution, Obesity and Type 2 Diabetes
Study TypeUntargeted high-resolution mass spectrometry profiling
Study SummaryThe overall goal of this proposal is to use blood non-targeted high resolution metabolomics (HRM) to investigate the hypothesis that regional air pollution (NO2, PM2.5 and O3) and traffic-related air pollution exposures (traffic-related particulate matter components including EC2.5 and PM2.5 transition metals, and CALINE model-predicted NOx) alter key metabolic pathway(s) and that these alterations are associated with obesity and type 2 diabetes-related traits during the important developmental period of adolesence in the ongoing prospective Chidlren's Health study (CHS). Specific Aim 1 will examine the adverse impact of environmental chemicals in fasting blood samples measured by HRM on obesity (i.e., total body fat and body mass index (BMI)), metabolic dysfunction (e.g., fasting glucose and insulin concentrations and insulin resistance), and obesity-induced inflammation (i.e., leptin) among 104 Southern California adolescents enrolled in the CHS. Specific Aim 2 will examine associations of childhood exposures to PM2.5 and traffic-related air pollutants (i.e., CALINE model-predicted NOx) with biological metabolites identified in fasting blood samples using HRM among 104 adolescents in the CHS. Specific Aim 3 will investigate the metabolic pathways linking air pollution exposures and obesity and type 2 diabetes-related traits using pathway analysis under bayesian hierarchical model among 104 adolescents in the CHS.
Institute
Emory University
DepartmentSchool of Medicine, Division of Pulmonary, Allergy, Critical Care Medicine
LaboratoryClincal Biomarkers Laboratory
Last NameWalker
First NameDouglas
Address615 Michael St. Ste 225, Atlanta, GA, 30322, USA
Emaildouglas.walker@emory.edu
Phone(404) 727 5984
Submit Date2017-12-05
Total Subjects104
Study CommentsBoth CHEAR and Clinical Biomarker Laboratory pooled plasma samples were used for quality control. Study specific sample pools were not created
Raw Data File Type(s)mzXML
Chear StudyYes
Analysis Type DetailLC-MS
Release Date2020-09-12
Release Version1
Douglas Walker Douglas Walker
https://dx.doi.org/10.21228/M87H6H
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN001476 AN001477
Analysis type MS MS
Chromatography type HILIC Reversed phase
Chromatography system Thermo Dionex Ultimate 3000 Thermo Dionex Ultimate 3000
Column Waters XBridge Amide (50 x 2.1mm, 2.5um) Thermo Higgins C18 (50 x 2.1mm, 3um)
MS Type ESI ESI
MS instrument type Orbitrap Orbitrap
MS instrument name Thermo Q Exactive HF hybrid Orbitrap Thermo Q Exactive HF hybrid Orbitrap
Ion Mode POSITIVE NEGATIVE
Units Peak intensity Peak intensity

MS:

MS ID:MS001360
Analysis ID:AN001476
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
Ion Mode:POSITIVE
Capillary Temperature:250C
Collision Gas:N2
Dry Gas Flow:45
Dry Gas Temp:150C
Mass Accuracy:< 3ppm
Spray Voltage:+3500
Activation Parameter:5e5
Activation Time:118ms
Interface Voltage:S-Lens RF level= 55
Resolution Setting:120,000
Scanning Range:85-1275
Analysis Protocol File:EmoryUniversity_HRM_QEHF-MS_092017_v1.pdf
  
MS ID:MS001361
Analysis ID:AN001477
Instrument Name:Thermo Q Exactive HF hybrid Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
Ion Mode:NEGATIVE
Capillary Temperature:250C
Collision Gas:N2
Dry Gas Flow:45
Dry Gas Temp:150C
Mass Accuracy:< 3ppm
Spray Voltage:-4000
Activation Parameter:5e5
Activation Time:118ms
Interface Voltage:S-Lens RF level= 55
Resolution Setting:120,000
Scanning Range:85-1275
Analysis Protocol File:EmoryUniversity_HRM_QEHF-MS_092017_v1.pdf
  logo