Summary of Study ST001853

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001166. The data can be accessed directly via it's Project DOI: 10.21228/M80981 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001853
Study TitleLongitudinal Metabolomics of Human Plasma Reveals Robust Prognostic Markers of COVID-19 Disease Severity (Part 2)
Study SummaryThere is an urgent need to identify which COVID-19 patients will develop life-threatening illness so that medical resources can be optimally allocated and rapid treatment can be administered early in the disease course, when clinical management is most effective. To aid in the prognostic classification of disease severity, we perform untargeted metabolomics on plasma from 339 patients, with samples collected at six longitudinal time points. Using the temporal metabolic profiles and machine learning, we build a predictive model of disease severity. We discover that a panel of metabolites measured at the time of study entry successfully determine disease severity. Through analysis of longitudinal samples, we confirm that the majority of these markers are directly related to disease progression and that their levels are restored to baseline upon disease recovery. Finally, we validate that these metabolites are also altered in a hamster model of COVID-19. Our results indicate that metabolic changes associated with COVID-19 severity can be effectively used to stratify patients and inform resource allocation during the pandemic.
Institute
Washington University in St. Louis
DepartmentChemistry
LaboratoryPatti
Last NamePatti
First NameGary
AddressMcMillen Chemistry Laboratory, Washington University 1 Brookings Dr @ Throop Drive, Rm 102, St. Louis, MO 63130-4899
Emailgjpattij@wustl.edu
Phone314-935-3512
Submit Date2021-01-28
Num Groups3
Total Subjects56
Num Females56
Raw Data AvailableYes
Raw Data File Type(s)mzML
Analysis Type DetailLC-MS
Release Date2021-06-30
Release Version1
Gary Patti Gary Patti
https://dx.doi.org/10.21228/M80981
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Collection:

Collection ID:CO001923
Collection Summary:Outbred female LVG golden Syrian hamsters (6-8 weeks of age) were obtained from Charles River Laboratories (Kingston, NY). The hamsters were anesthetized by intraperitoneal injection of a mixture of ketamine and xylazine prior to intranasal inoculation with 0.1 mL of 1e5 plaque-forming units (PFU) of SARS-CoV-2 (WA-1) or H1N1 influenza A virus (A/California/04/2009). On day 2, 4, 6, and 14 after infection, 3-6 anesthetized hamsters per infection group were euthanized by exsanguination followed by intracardiac injection of veterinary euthanasia solution (SleepAway; Fort Dodge). Plasma samples were treated by exposure to germicidal UV-C light.
Sample Type:Blood (plasma)
  logo