Summary of Study ST001843

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR000667. The data can be accessed directly via it's Project DOI: 10.21228/M8FX07 This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST001843
Study TitleIdentification of unique metabolite networks between Latino and Caucasian patients with nonalcoholic fatty liver disease (NAFLD) (part II)
Study SummaryNonalcoholic fatty liver disease (NAFLD) is a spectrum of liver pathology ranging from simple steatosis to nonalcoholic steatohepatitis (NASH); the latter is characterized by inflammation and fibrosis. Risk factors for NALFD include obesity, diabetes, hyperlipidemia, and hypertension—all of which are features of metabolic syndrome. NAFLD is a very heterogeneous disease, as it presents in different patterns in males and females and in patients from different ethnicities, with unclear predictors for development and severity of disease. Previous studies have shown that NAFLD is 1.4 times more frequent in Hispanics than in Caucasians. One of the major challenges in NAFLD is the lack of accurate, noninvasive biomarkers for the detection of the most aggressive presentation, NASH. The gold standard for the diagnosis is liver biopsy, which is an invasive procedure associated with possible complications. Noninvasive diagnosis of NASH is a major unmet medical need and there are no ethnicity-specific biomarkers that can diagnose this condition and predict its progression. Therefore, the main gap in knowledge that this proposal and line of research will address is the characterizing the different plasma and liver metabolomics profile of patients with fatty liver from two ethnicities (Latinos vs. Caucasians) and of both sexes. The overall hypothesis of the present study is that the higher incidence of nonalcoholic fatty liver (NAFL) in Latino patients is reflected in a different plasma and liver metabolomics profile compared to Caucasian patients with further sex-related differences. Characterization of metabolite networks can aid in identifying the mechanistic underpinnings of sex and ethnic driven differences in NAFL which could help diagnose and establish a prognosis of this condition, especially in the critical transition from NAFL to the more aggressive nonalcoholic steatohepatitis (NASH).To address this hypothesis, plasma metabolomics profile of samples from male and female Latino and Caucasian bariatric surgery patients with NAFL and from healthy subjects will be compared. Metabolomics findings will be related with liver pathology and liver transcriptome profiles from intraoperatively obtained liver biopsies using correlation, network, and pathway analysis.
Institute
University of California, Davis
DepartmentDepartment of Internal Medicine, Division of Gastroenterology and Hepatology
LaboratoryMedici Lab
Last NameMedici
First NameValentina
Address4150 V Street - PSSB Suite 3500 - 95817 Sacramento CA
Emailvmedici@ucdavis.edu
Phone(916) 734 3751
Submit Date2021-06-10
Raw Data AvailableYes
Raw Data File Type(s)d
Analysis Type DetailGC-MS
Release Date2021-07-05
Release Version1
Valentina Medici Valentina Medici
https://dx.doi.org/10.21228/M8FX07
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN002986
Analysis type MS
Chromatography type Reversed phase
Chromatography system Agilent 6550
Column Waters Acquity BEH C18 (100 x 2mm,1.7um)
MS Type EI
MS instrument type CSH
MS instrument name Agilent 6550 QTOF
Ion Mode UNSPECIFIED
Units normalized peak height

MS:

MS ID:MS002776
Analysis ID:AN002986
Instrument Name:Agilent 6550 QTOF
Instrument Type:CSH
MS Type:EI
MS Comments:LC/MS parameters The LC/QTOFMS analyses are performed using an Agilent 1290 Infinity LC system (G4220A binary pump, G4226A autosampler, and G1316C Column Thermostat) coupled to either an Agilent 6530 (positive ion mode) or an Agilent 6550 mass spectrometer equipped with an ion funnel (iFunnel) (negative ion mode). Lipids are separated on an Acquity UPLC CSH C18 column (100 x 2.1 mm; 1.7 µm) maintained at 65°C at a flow-rate of 0.6 mL/min. Solvent pre-heating (Agilent G1316) was used. The mobile phases consist of 60:40 acetonitrile:water with 10 mM ammonium formate and 0.1% formic acid (A) and 90:10 propan-2-ol:acetonitrile with 10 mM ammonium formate and 0.1% formic acid. The gradient is as follows: 0 min 85% (A); 0–2 min 70% (A); 2–2.5 min 52% (A); 2.5–11 min 18% (A); 11–11.5 min 1% (A); 11.5–12 min 1% (A); 12–12.1 min 85% (A); 12.1–15 min 85% (A). A sample volume of 3 µL is used for the injection. Sample temperature is maintained at 4°C in the autosampler. The quadrupole/time-of-flight (QTOF) mass spectrometers are operated with electrospray ionization (ESI) performing full scan in the mass range m/z 65–1700 in positive (Agilent 6530, equipped with a JetStreamSource) and negative (Agilent 6550, equipped with a dual JetStream Source) modes producing both unique and complementary spectra. Instrument parameters are as follows (positive mode) Gas Temp 325°C, Gas Flow 8 l/min, Nebulizer 35 psig, Sheath Gas 350°C, Sheath Gas Flow 11, Capillary Voltage 3500 V, Nozzle Voltage 1000V, Fragmentor 120V, Skimmer 65V. Data (both profile and centroid) are collected at a rate of 2 scans per second. In negative ion mode, Gas Temp 200°C, Gas Flow 14 l/min, Fragmentor 175V, with the other parameters identical to positive ion mode. For the 6530 QTOF, a reference solution generating ions of 121.050 and 922.007 m/z in positive mode and 119.036 and 966.0007 m/z in negative mode, and these are used for continuous mass correction. For the 6550, the reference solution is introduced via a dual spray ESI, with the same ions and continuous mass correction. Samples are injected (1.7 μl in positive mode and 5 μl in negative ion mode) with a needle wash for 20 seconds (wash solvent is isopropanol). The valve is switched back and forth during the run for washing; this has been shown to be essential for reducing carryover of less polar lipids.
Ion Mode:UNSPECIFIED
  logo