Summary of Study ST003072

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001914. The data can be accessed directly via it's Project DOI: 10.21228/M89T5V This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003072
Study TitleInvestigation of polar metabolites by targeted LC-MS analysis from mouse adult or embryonic CSF and from adult serum.
Study SummaryTo maximize discovery from samples with limited amounts, we optimized a method to detect the thyroid hormones ( 3,5,3’-L-triiodothyronine (T3) and 3,5,3’5’-L-tetraiodothyronine (T4)) as well as polar metabolites from central carbon metabolism from mouse adult or embryonic CSF and from adult mouse serum. Samples were ran on reverse phase and HILIC chromatography respectively. For polar metabolite analysis, we employed targeted metabolomics profiling of a panel of 200 compounds. We interrogated relative changes between fresh and frozen adult (male or female) CSF compared to fresh and frozen embryonic CSF. This data presents results from polar HILIC chromatography
Institute
Boston Childrens Hospital
DepartmentPathology
LaboratoryKanarek Lab
Last NamePetrova
First NameBoryana
Address300 Longwood Av
Emailboryana.petrova@childrens.harvard.edu
Phone617
Submit Date2024-01-10
Num Groups7
Total Subjects19
Num Males8
Num Females6
Study Commentsembryos also investigated. samples split for fresh and frozen conditions
Raw Data AvailableYes
Raw Data File Type(s)raw(Thermo)
Analysis Type DetailLC-MS
Release Date2024-02-14
Release Version1
Boryana Petrova Boryana Petrova
https://dx.doi.org/10.21228/M89T5V
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Combined analysis:

Analysis ID AN005030
Analysis type MS
Chromatography type HILIC
Chromatography system Thermo Vanquish
Column SeQuant ZIC- pHILIC (150 x 2.1mm,5um)
MS Type ESI
MS instrument type Orbitrap
MS instrument name Thermo Q Exactive Orbitrap
Ion Mode UNSPECIFIED
Units a.u.

MS:

MS ID:MS004769
Analysis ID:AN005030
Instrument Name:Thermo Q Exactive Orbitrap
Instrument Type:Orbitrap
MS Type:ESI
MS Comments:MS Data Acquisition Conditions for Targeted Analysis of Polar Metabolites and Thyroid Hormones: MS data acquisition was performed using a Q Exactive Orbitrap benchtop orbitrap mass spectrometer equipped with an Ion Max source and a HESI II probe (Thermo Fisher Scientific, San Jose, CA, USA) in positive and negative ionization mode in a range of m/z = 70–1000, with the resolution set at 70,000, the AGC target at 1 × 106, and the maximum injection time (Max IT) at 20 msec. A narrower scan in positive mode at m/z = 600–800 was used for more specific detection of TH. The resolution was set at 70,000, the AGC target was 5 × 105, and the max IT was 100 msec. For polar metabolites, HESI conditions were as follows: sheath gas flow rate: 35 units; Aug gas flow rate: 8 units; sweet gas flow rate: 1 unit; spray voltage: 3.5 kV (pos), 2.8 kV (neg); capillary temperature: 320 °C; S-lens RF: 50; Aux gas heater temperature: 350 °C. For T3/T4, HESI conditions were as follows: sheath gas flow rate: 40 units; Aug gas flow rate: 10 units; sweet gas flow rate: 0; spray voltage: 3.5 kV (pos), 2.8 kV (neg); capillary temperature: 380 °C; S-lens RF: 60; Aux gas heater temperature: 420 °C. Targeted Metabolomics Data Analysis: Relative quantification of polar metabolites was performed with TraceFinder 5.1 (Thermo Fisher Scientific, Waltham, MA, USA) using a 5 ppm mass tolerance and referencing an in-house library of chemical standards (see associated Supplemental Dataset S1). We routinely queried 266 compounds (40 internal standards and 226 metabolites). Pooled samples and fractional dilutions were prepared as quality controls and injected at the beginning and end of each run. In addition, pooled samples were interspersed throughout the run to control for technical drift in signal quality as well as to serve to assess the coefficient of variability (CV) for each metabolite. Data from TraceFinder were further consolidated and normalized with an in-house R script, freely accessible at github (https://github.com/FrozenGas/KanarekLabTraceFinderRScripts/blob/main/MS_data_script_v2.4_20221018.R). Briefly, this script performs the following normalization and quality control steps: (1) extracts and combines the peak areas from TraceFinder output.csvs; (2) calculates and normalizes to an averaged factor from all mean-centered chromatographic peak areas of isotopically labeled amino acid and QReSS internal standards within each sample; (3) filters out low-quality metabolites based on user-inputted cut-offs calculated from pool reinjections and pool dilutions; (4) calculates and normalizes for biological material amounts based on the total integrated peak area values of high-confidence metabolites. In this study, the linear correlation between the dilution factor and the peak area cut-offs is set to RSQ > 0.95 and the coefficient of variation (CV) < 30%. Finally, data were log transformed and Pareto scaled within the MetaboAnalyst-based statistical analysis platform [42] to generate PCA, PLSDA, volcano plots, and heatmaps. Individual metabolite bar plots and statistics were calculated in Excel (v16.81) and GraphPad Prism (v.10).
Ion Mode:UNSPECIFIED
  logo