Summary of Study ST003064

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001910. The data can be accessed directly via it's Project DOI: 10.21228/M8TT6W This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003064
Study TitleMetabolic responses of Amaranthus caudatus roots and leaves to zinc stress
Study TypeGCMS-based untargeted and targeted analysis
Study SummaryDuring the last decades pollution with heavy metals became an important stress factor. Plants are characterized by significant biochemical plasticity and can adjust their metabolism to ensure survival under changing environmental conditions. In the most straightforward way these metabolic shifts can be addressed by the untargeted mass spectrometry-based metabolomics approach. However, so far this methodology was only minimally employed in studies of Zn-induced metabolic shifts in plants. Moreover, the genus Amaranthus is still not addressed in this respect. Therefore, here we propose, to the best of our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn2+-induced stress responses in Amaranthus caudatus plants. The GC-MS-based study was performed with root and leaf aqueous methanolic extracts after their lyophylization and sequential derivatization with methoxylamine hydrochloride and N-trimethylsilyl-N-methyl trifluoroacetamide. Thereby, 419 derivatives were detected, of which 144 could be putatively annotated. The metabolic shifts in seven-week old A.caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. The most of the responsive metabolites were up-regulated and dominated with sugars and sugar acids. These effects could be attributed to the involvement of these metabolites in osmoregulation, ROS scavenging and complexation of Zn2+ ions. Galactose was the most Zn2+-responsive root sugar that indicated its possible role in the binding of Zn2+ ions to the root cell walls. A 59-fold up-regulation of gluconic acid in roots clearly indicated its involvement in chelation of Zn2+. A high Zn2+–induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in the activation of Zn2+ stress tolerance mechanisms. Thus, our study provides the first insight in the general trends in Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus plants.
Institute
K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
LaboratoryLaboratory of Analytical Biochemistry and Biotechnology
Last NameFrolov
First NameAndrej
AddressBotanicheskaya st. 35., Moskow, 127276, Russian Federation
Emailfrolov@ifr.moscow
Phone+79046097095
Submit Date2024-01-29
Raw Data AvailableYes
Raw Data File Type(s)cdf
Analysis Type DetailGC-MS
Release Date2024-04-02
Release Version1
Andrej Frolov Andrej Frolov
https://dx.doi.org/10.21228/M8TT6W
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Sample Preparation:

Sampleprep ID:SP003185
Sampleprep Summary:Approximately 10 and 20 mg of ground dry leaf and root material, respectively, were extracted with 1 mL methanol. After vortexing (3000 g, 30 s) and centrifugation (12000 g, 4 °C, 10 min) of the suspensions, the resulted supernatants were collected. The plant material residues were additionally supplemented with 0.1 mL of deionized water. After a following vortex and centrifugation cycle, the obtained supernatants were combined with the first portions. The total extract volume was 1090 μL. Aliquots (30 μL) of the resulted aq. methanolic extracts were freeze-dried under reduced pressure with Labconco CentriVap centrifugal concentrator. The residues were sequentially derivatized with methoxyamine hydrochloride in pyridine, and N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) according to the established procedure (Leonova et al., 2020, http://dx.doi.org/10.3390/ijms21020567).
Processing Storage Conditions:4℃
Extract Storage:-20℃
  logo