Summary of Study ST003064

This data is available at the NIH Common Fund's National Metabolomics Data Repository (NMDR) website, the Metabolomics Workbench, https://www.metabolomicsworkbench.org, where it has been assigned Project ID PR001910. The data can be accessed directly via it's Project DOI: 10.21228/M8TT6W This work is supported by NIH grant, U2C- DK119886.

See: https://www.metabolomicsworkbench.org/about/howtocite.php

This study contains a large results data set and is not available in the mwTab file. It is only available for download via FTP as data file(s) here.

Perform statistical analysis  |  Show all samples  |  Show named metabolites  |  Download named metabolite data  
Download mwTab file (text)   |  Download mwTab file(JSON)   |  Download data files (Contains raw data)
Study IDST003064
Study TitleMetabolic responses of Amaranthus caudatus roots and leaves to zinc stress
Study TypeGCMS-based untargeted and targeted analysis
Study SummaryDuring the last decades pollution with heavy metals became an important stress factor. Plants are characterized by significant biochemical plasticity and can adjust their metabolism to ensure survival under changing environmental conditions. In the most straightforward way these metabolic shifts can be addressed by the untargeted mass spectrometry-based metabolomics approach. However, so far this methodology was only minimally employed in studies of Zn-induced metabolic shifts in plants. Moreover, the genus Amaranthus is still not addressed in this respect. Therefore, here we propose, to the best of our knowledge, the first gas chromatography-mass spectrometry (GC-MS)-based metabolomics study of Zn2+-induced stress responses in Amaranthus caudatus plants. The GC-MS-based study was performed with root and leaf aqueous methanolic extracts after their lyophylization and sequential derivatization with methoxylamine hydrochloride and N-trimethylsilyl-N-methyl trifluoroacetamide. Thereby, 419 derivatives were detected, of which 144 could be putatively annotated. The metabolic shifts in seven-week old A.caudatus plants in response to a seven-day treatment with 300 µmol/L ZnSO4·7H2O in nutrient solution were organ-specific and more pronounced in roots. The most of the responsive metabolites were up-regulated and dominated with sugars and sugar acids. These effects could be attributed to the involvement of these metabolites in osmoregulation, ROS scavenging and complexation of Zn2+ ions. Galactose was the most Zn2+-responsive root sugar that indicated its possible role in the binding of Zn2+ ions to the root cell walls. A 59-fold up-regulation of gluconic acid in roots clearly indicated its involvement in chelation of Zn2+. A high Zn2+–induced up-regulation of salicylic acid in roots and shoots suggested a key role of this hormone in the activation of Zn2+ stress tolerance mechanisms. Thus, our study provides the first insight in the general trends in Zn-induced biochemical rearrangements and main adaptive metabolic shifts in A. caudatus plants.
Institute
K.A. Timiryazev Institute of Plant Physiology RAS, Moscow, Russia
LaboratoryLaboratory of Analytical Biochemistry and Biotechnology
Last NameFrolov
First NameAndrej
AddressBotanicheskaya st. 35., Moskow, 127276, Russian Federation
Emailfrolov@ifr.moscow
Phone+79046097095
Submit Date2024-01-29
Raw Data AvailableYes
Raw Data File Type(s)cdf
Analysis Type DetailGC-MS
Release Date2024-04-02
Release Version1
Andrej Frolov Andrej Frolov
https://dx.doi.org/10.21228/M8TT6W
ftp://www.metabolomicsworkbench.org/Studies/ application/zip

Select appropriate tab below to view additional metadata details:


Treatment:

Treatment ID:TR003188
Treatment Summary:Amaranthus caudatus L., variety Karwa dauta plants were used in the study. After two weeks culturing in the hydroponic system (nutrient solution (in mmol/L) was as follows: Ca(NO3)2·4H2O - 3.81; KNO3 - 6.44; MgSO4·7H2O - 0.81; KH2PO4 - 1.83; NH4NO3 - 0.87; Fe-EDTA - 0.09; H3BO3 - 0.047; MnSO4·5H2O - 0.007; ZnSO4·7H2O - 0.0007; CuSO4·5H2O - 0.0008; (NH4)2MoO4 - 0.0005), the vessels with six-week-old plants (experimental group) were subjected to Zn2+ stress for one week which was accomplished by supplementation of 300 µmol/L ZnSO4·7H2O in the nutrient solution. Control plants remained untreated. Roots, young and mature leaves of seven-week-old Zn-treated and control plants were collected separately.
Treatment Protocol Comments:6 sample groups: LY_cont - young leaves of control plants; LY_Zn - young leaves of Zn-treated plants; LM_cont - mature leaves of control plants; LM_Zn - mature leaves of Zn-treated plants; R_cont - roots of control plants; R_Zn - roots of Zn-treated plants.
Treatment:Heavy metal stress
Treatment Compound:ZnSO4·7H2O
Treatment Route:supplementation in the nutrient solution
Treatment Dose:300 µmol/L
Treatment Doseduration:1 week
Plant Plot Design:total 27 plants in nine vessels
Plant Light Period:16 : 8 day/night regimen
Plant Humidity:70-75% relative humidity
Plant Temp:day/night temperatures of 24/18° C
Plant Watering Regime:plant were culturing in the hydroponic system
Plant Nutritional Regime:nutrient solution in mmol/L as follows: Ca(NO3)2·4H2O - 3.81; KNO3 - 6.44; MgSO4·7H2O - 0.81; KH2PO4 - 1.83; NH4NO3 - 0.87; Fe-EDTA - 0.09; H3BO3 - 0.047; MnSO4·5H2O - 0.007; ZnSO4·7H2O - 0.0007; CuSO4·5H2O - 0.0008; (NH4)2MoO4 - 0.0005
Plant Growth Stage:vegetative stage
  logo