Studies involving disease:Malaria
Study ID | Study Title | Species | Institute |
---|---|---|---|
ST000414 | Metabolomics-based screening of the Malaria Box reveals both novel and established mechanisms of action | Plasmodium falciparum | Monash Institute of Pharmaceutical Sciences |
ST000441 | Metabolomic Profiling of the Malaria Box Reveals Antimalarial Target Pathways | Plasmodium falciparum | Pennsylvania State University |
ST000546 | Multi-omics based identification of specific biochemical changes associated with PfKelch13-mutant artemisinin resistant Plasmodium | Plasmodium falciparum | Monash University |
ST000578 | Experiment HuA: Metabolomics of plasma samples from humans infected with Plasmodium vivax strain. | Human | Emory University |
ST000592 | Uninfected Macaca mulatta exposed to pyrimethamine to produce and integrate clinical, hematological, and omics control measures. | Rhesus monkey | Emory University |
ST000599 | Metabolomics measures of Macaca mulatta infected with Plasmodium coatneyi Hackeri strain | Rhesus monkey | Emory University |
ST001033 | Determination of mode of action of anti-malalrial drugs using untargeted metabolomics | Plasmodium falciparum | Monash University |
ST001149 | Plasmodium Niemann-Pick Type C1-Related Protein is a Druggable Target Required for Parasite Membrane Homeostasis | Plasmodium falciparum | Pennsylvania State University |
ST001175 | Multi-omics analysis demonstrates unique mode of action of a potent new antimalarial compound, JPC-3210, against Plasmodium falciparum | Plasmodium falciparum | Monash University |
ST001188 | P. falciparum infected erythrocytes | Plasmodium falciparum | University of Melbourne |
ST001201 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Human | Monash University |
ST001201 | Peroxide antimalarial treatment timecourse on trophozoite-stage P. falciparum parasites | Plasmodium falciparum | Monash University |
ST001202 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Human | Monash University |
ST001202 | Peroxide antimalarial treatment timecourse on ring-stage P. falciparum parasites | Plasmodium falciparum | Monash University |
ST001204 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Human | Monash University |
ST001204 | Peroxide antimalarial extended treatment timecourse on trophozoite-stage P. falciparum parasites | Plasmodium falciparum | Monash University |
ST001205 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Human | Monash University |
ST001205 | Peroxide antimalarial treatment of K13-mutant and -wildtype P. falciparum parasites | Plasmodium falciparum | Monash University |
ST001232 | Combining stage - specificity and metabolomic profiling to advance drug discovery for malaria | Plasmodium falciparum | Pennsylvania State University |
ST001238 | P falciparum asexual metabolomics following drug treatment (part-I) | Plasmodium falciparum | Pennsylvania State University |
ST001239 | NMR assignment of synthetic pantothenamides (part-II) | Synthetic | Pennsylvania State University |
ST001279 | K13 mutations driving artemisinin resistance rewrite Plasmodium falciparum’s programmed intra-erythrocytic development and transform mitochondrial physiology | Plasmodium falciparum | Pennsylvania State University |
ST001315 | Retargeting azithromycin-like compounds as antimalarials with dual modality | Plasmodium falciparum | Monash University |
ST001384 | Plasmodium falciparum increased time in circulation underlies persistent asymptomatic infection in the dry season | Human | Pennsylvania State University |
ST001400 | Identification of distinct metabolic perturbations and associated immunomodulatory events during intra-erythrocytic development stage of pediatric Plasmodium falciparum malaria | Human | New York University Abu Dhabi |
ST001516 | Identification of distinct metabolic perturbations and associated immunomodulatory events during intra-erythrocytic development stage of pediatric Plasmodium falciparum malaria (part-II) | Human | New York University Abu Dhabi |
ST001517 | Identification of distinct metabolic perturbations and associated immunomodulatory events during intra-erythrocytic development stage of pediatric Plasmodium falciparum malaria (part-III) | Human | New York University Abu Dhabi |
ST001652 | Atypical Molecular Basis for Drug Resistance to Mitochondrial AQ: A Function Inhibitors in Plasmodium falciparum | Plasmodium falciparum | U.S. Food & Drug Administration |
ST001660 | Plasmodium falciparum metabolomics as a result of treatment with putative acetyl-CoA synthetase inhibitors | Fungi | Pennsylvania State University |
ST001660 | Plasmodium falciparum metabolomics as a result of treatment with putative acetyl-CoA synthetase inhibitors | Plasmodium falciparum | Pennsylvania State University |
ST001775 | Plasma metabolomics of diverse mouse strains infected with Plasmodium chabaudi | Mouse | Stanford University |
ST001864 | Targeting host glycolysis as a strategy for antimalarial development | Human | University of Colorado Anschutz Medical Campus |
ST001899 | Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites (part I) | Mouse | QIMR Berghofer Medical Research Institute |
ST001900 | Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites (part II) | Mouse | QIMR Berghofer Medical Research Institute |
ST001985 | Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 | Human | Pennsylvania State University |
ST001985 | Profiling Plasmodium falciparum parasites and human red blood cells after treatment with MMV693183 | Plasmodium falciparum | Pennsylvania State University |
ST002011 | The anticancer human mTOR inhibitor MLN0128/Sapanisertib with potent multistage in vitro antiplasmodium activity and in vivo antimalarial efficacy in a humanised mouse model is an inhibitor of multiple Plasmodium falciparum kinases. | Plasmodium falciparum | Pennsylvania State University |
ST002024 | Plasmodium falciparum stable-isotope carbon labeling to explore metabolic consequences of keto–acid dehydrogenase disruption | Plasmodium falciparum | Pennsylvania State University |
ST002078 | Multiple modes of interfering with the activity of Plasmodium falciparum cytoplasmic isoleucyl-tRNA synthetase illustrate the enzyme is a promising antimalarial target. | Plasmodium falciparum | Pennsylvania State University |
ST002106 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 1) | Plasmodium falciparum | Monash University |
ST002107 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 2) | Plasmodium falciparum | Monash University |
ST002108 | Genetic and chemical validation of Plasmodium falciparum aminopeptidase PfA-M17 as a drug target in the hemoglobin digestion pathway (Part 3) | Plasmodium falciparum | Monash University |
ST002181 | Piperaquine-resistant PfCRT mutations differentially impact drug transport, hemoglobin catabolism and parasite physiology in Plasmodium falciparum asexual blood stages. | Plasmodium falciparum | Pennsylvania State University |
ST002309 | Targeting malaria parasites with novel derivatives of azithromycin | Plasmodium falciparum | Monash University |
ST002698 | Systemic host inflammation induces stage-specific transcriptomic modification and slower maturation in malaria parasites | Plasmodium berghei | Peter Doherty Institute for Infection and Immunity |
ST002792 | Chemoproteomics validates selective targeting of Plasmodium M1 alanyl aminopeptidase as a cross-species strategy to treat malaria | Plasmodium falciparum | Monash University |
ST002926 | Multi-“omics” analysis reveals the orphan P. falciparum protein kinase PfPK8 regulates multi-gene family expression | Plasmodium falciparum | Monash University |
ST003117 | Metabolomics of patients with Plasmodium vivax malaria | Human | University of Sao Paulo |
ST003144 | On-target, dual aminopeptidase inhibition provides cross-species antimalarial activity | Plasmodium falciparum | Monash University |
ST003160 | New class of heterospirocyclic compounds present strong and rapid activity against artemisinin- and multidrug-resistant P. falciparum parasites | Plasmodium falciparum | Monash University |
ST003179 | Property and Activity Refinement of Dihydroquinazolinone-3-carboxamides as Orally Efficacious Antimalarials that Target PfATP4 | Plasmodium falciparum | Monash University |
ST003562 | Multiple, redundant carboxylic acid transporters support mitochondrial metabolism in Plasmodium falciparum | Parasite | Pennsylvania State University |